
CHAPTER 5 
APPLICATIONS 
OF ENERGY METHODS 

r 
Energy  methods are used widely to obtain solutions to elasticity problems 

and determine deflections of structures and machines. Since energy is a scalar quantity, 
energy methods are sometimes called scalar methods. In this chapter, energy methods are 
employed to obtain elastic deflections of statically determinate structures and to determine 
redundant reactions and deflections of statically indeterminate structures. The applications 
of energy methods in this book are limited mainly to linearly elastic material behavior and 
small displacements. However, in Sections 5.1 and 5.2, energy methods are applied to two 
nonlinear problems to demonstrate their generality. 

For the determination of the deflections of structures, two energy principles are pre- 
sented: 1. the principle of stationary potential energy and 2. Castigliano's theorem on 
deflections. 

5.1 PRINCIPLE OF STATIONARY POTENTIAL ENERGY 
~~~ ~~ 

We employ the concept of generalized coordinates (x,, x2, . . . , x,) to describe the shape of 
a structure in equilibrium (Langhaar, 1989; Section 1.2). Since plane cross sections of the 
members are assumed to remain plane, the changes of the generalized coordinates denote 
the translation and rotation of the cross section of the member. 

In this chapter, we consider applications in which a finite number of degrees of free- 
dom, equal to the number of generalized coordinates, specifies the configuration of the 
system. 

Consider a system with a finite number of degrees of freedom that has the equilib- 
rium configuration (x,, x2, . . . , x,). A virtual (imagined) displacement is imposed such that 
the new configuration is (x, + 6xl, x2 + h2, ..., x, + &,), where (ckl, fk2, ..., &,) is the 
virtual displacement.' The virtual work &V corresponding to the virtual displacement is 
given by 

6W = Q , 6 x 1 + Q * 6 ~ X 2 + . . . + Q j 6 x i + . . . + Q , 6 ~ ,  (a) 

where (Ql, Q2, . . ., Q i y  . . . , Q,) are components of the generalized load. They are functions 
of the generalized coordinates. Let Qi be defined for a given cross section of the structure; 

'Note that the virtual displacement must not violate the essential boundary conditions (support conditions) for 
the structure. 
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Qj is a force if 6xj is a translation of the cross section, and Qi is a moment (or torque) if 6xj 
is a rotation of the cross section. 

For a deformable body the virtual work 6W corresponding to virtual displacement of 
a mechanical system may be separated into the sum 

m = me+mi (b) 

where 6We is the virtual work of the external forces and 6Wi is the virtual work of the 
internal forces. 

Analogous to the expression for 6W in Eq. (a), under a virtual displacement (&,, 
6c2, ..., &,), we have 

(c) 

where ( P I ,  P,, . . . , P,)  are functions of the generalized coordinates ( x l ,  x2, . . . , x,). By anal- 
ogy to the Qi in Eq. (a), the functions ( P I ,  P,, . . . , P,) are called the components of gener- 
alized external load. If the generalized coordinates (x , ,  x2, . . . , x,) denote displacements 
and rotations that occur in a system, the variables (P1, P2,  . . ., P,) may be identified as the 
components of the prescribed external forces and couples that act on the system. 

Now imagine that the virtual displacement takes the system completely around any 
closed path. At the end of the closed path, we have 6Cl = h2 = - - -  = &, = 0. Hence, by Eq. 
(c), 6We = 0. In our applications, we consider only systems that undergo elastic behavior. 
Then the virtual work 6Wi of the internal forces is equal to the negative of the virtual 
change in the elastic strain energy SU, that is, 

me = P,SX,  + P26x2 + ... + P,6x,  

mi = -6U (4 
where U = U(x, ,  x2, . . . , x,) is the total strain energy of the system. Since the system travels 
around a closed path, it returns to its initial state and, hence, 6U = 0. Consequently, by Eq. 
(d), 6Wi = 0. Accordingly, the total virtual work 6W [Eq. (b)] also vanishes around a closed 
path. The condition 6W = 0 for virtual displacements that carry the system around a closed 
path indicates that the system is conservative. The condition 6W = 0 is known as the prin- 
ciple of stationary potential energy. 

For a conservative system (e.g., elastic structure loaded by conservative external 
forces), the virtual change in strain energy 6U of the structure under the virtual displace- 
ment (&,, &,, . . ., &,) is 

dU dU dU 6U = -6x + -6x2 + ... + - a x ,  
d x ,  ax2 'xn 

Then, Eqs. (a) through (e) yield the result 

or 

dU Q j  = P i - - ,  i = 1 , 2 ,  ..., n 
dXi 

For any system with finite degrees of freedom, if the components Qi of the general- 
ized force vanish, then the system is in equilibrium. Therefore, by Eq. (f), an elastic sys- 
tem with n degrees of freedom is in equilibrium if (Langhaar, 1989; Section 1.9) 
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Nonlinear elastic load-elongation curve. FIGURE 5.1 

EXAMPLE 5.1 
Equilibrium of a 

Linear Elastic 
Two-Bar System 

dU P .  = -, i = 1,2  ,..., n ‘ d X i  
(5.1) 

The relation given in Eq. 5.1 is sometimes referred to as Castigliano’sfirst theorem. For a 
structure, the strain energy U is obtained as the sum of the strain energies of the members 
of the structure. Note the similarity between Eqs. 5.1 and Eqs. 3.1 1. 

As a simple example, consider a uniform bar loaded at its ends by an axial load P. 
Let the bar be made of a nonlinear elastic material with the load-elongation curve indi- 
cated in Figure 5.1. The area below the curve represents the total strain energy U stored in 
the bar, that is, U = P de; then by Eq. 5.1, P = &J/de,  where P is the generalized external 
force and e the generalized coordinate. If the load-elongation data for the bar are plotted 
as a stress-strain curve, the area below the curve is the strain-energy density Uo stored in 
the bar (see Figure 3.1). Then, Uo = cr de and, by Eqs. 3.1 1, cr = dUo/de. 

Equation 5.1 is valid for nonlinear elastic (conservative) problems in which the non- 
linearity is due either to finite geometry changes or material behavior, or both. The equa- 
tion is also valid for systems with inelastic materials as long as the loading is monotonic 
and proportional. The following example problem indicates the application of Eq. 5.1 for 
finite geometry changes. 

Two bars AB and CB of lengths L, and L,, respectively, are attached to a rigid foundation at points A 
and C, as shown in Figure E5. la. The cross-sectional area of bar AB is A and that of bar CB is A,. 
The corresponding moduli of elasticity are El and E,. Under the action of horizontal and vertical 
forces P and Q, pin B undergoes finite horizontal and vertical displacement with components u and v, 
respectively (Figure E5. la). The bars AB and CB remain linearly elastic. 

(a) Derive formulas for P and Q in terms of u and v. 

(b) Let E,A,/L, = K, = 2.00 N/mm and E2A2/L2 = K2 = 3.00 N/mm, and let bl = h = 400 mm and b, = 
300 mm. For u = 30 mm and v = 40 mm, determine the values of P and Q using the formulas derived 
in part (a). 

(c) Consider the equilibrium of the pinB in the displaced position B* and verify the results of part (b). 

(d) For small displacement components u and v (u, v << L1,  L,), linearize the formulas for P and Q 
derived in part (a). 
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Solution 

(a) 

FIGURE E5.1 

(a) For this problem the generalized external forces are P l  = P and P2 = Q and the generalized coor- 
dinates are xl = u and x2 = v. For the geometry of Figure E5.la, the elongations e l  and e2 of bars 1 
(bar AB with length L , )  and 2 (bar CB with length L2) can be obtained in terms of u and v as follows: 

( L 1 + e l )  2 = ( b l + u )  2 +(h+v)’, L: = bT+h2  

(a) 2 2 2 ( L 2 + e 2 )  = ( b 2 - u )  + ( h + v )  , L; = b ; + h 2  

Solving for ( e l ,  e2),  we obtain 

e l  = , , / ( b , + u )  2 + ( h + v )  2 - L l  

e2  = J - - L ~  

Since each bar remains linearly elastic, the strain energies U1 and U2 of bars AB and CB are 

1 E l A l e 2  

U ,  = -N2e2 1 = E2A2 -e2 2 

U, = - N l e l  = - 2 2L1 1 

2 2L2 

where N ,  and N2 are the tension forces in the two bars. The elongations of the two bars are given by 
the relation ei = N i L i / E i A  i .  The total strain energy U for the structure is equal to the sum U1 + U2 of 
the strain energies of the two bars; therefore by Eqs. (c), 

E l A l  2 E2A2 2 

2L1 2L2 
u = -  e l  + -e2 

The magnitudes of P and Q are obtained by differentiation of Eq. (d) with respect to u and v, respec- 
tively (see Eq. 5.1). Thus, 

The partial derivatives of e l  and e2 with respect to u and v are obtained from Eqs. (b). Taking the 
derivatives and substituting in Eqs. (e), we find 
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2 2 E , A , ( b ,  + u )  fil + u )  + ( h  + v )  -Ll  
P =  

L 1  Jm 
2 E,A,(b2 - u )  L b ,  - u),  + ( h  + v )  -L2 - 

L2 /- 

L 1  /- 

L2 /- 

E , A , ( h  + v )  J m - L ,  
Q =  

E,A2( h + v )  /-- L ,  + 

(b) Substitution of the values K,, K2,  b , ,  b,, h, L, ,  L,, u, and v into Eqs. (f) gives 

P = 43.8 N 
Q = 112.4 N 

(c) The values of P and Q may be verified by determining the tension forces N, and N2 in the two 
bars, determining directions of the axes of the two bars for the deformed configuration, and applying 
equations of equilibrium to a free-body diagram of pin B*. Elongations el = 49.54 mm and e2 = 16.24 
mm are given by Eqs. (b). The tension forces N, and N2 are 

N, = e lKl  = 99.08N 

N ,  = e2K2 = 48.72N 

Angles 8* and $* for the directions of the axes of the two bars for the deformed configurations are 
found to be 0.7739 and 0.5504 rad, respectively. The free-body diagram of pinB* is shown in Figure 
E5.lb. The equations of equilibrium are 

C F x  = 0 = P-N,sin@++,sin$*; hence,P = 43.8N 

Z F ,  = 0 = Q-N1cos8*-N2cos$*; hence,Q = 112.4N 

These values of P and Q agree with those of Eqs. (g). 

(d) If displacements u and v are very small compared to b ,  and b,, and, hence, with respect to L ,  and 
L,, simple approximate expressions for P and Q may be obtained. For example, we find by the bino- 
mial expansion to linear terms in u and v that 

/- = L z - L z + L z  b2U hv 

With these approximations, Eqs. (f) yield the linear relations 
E A b  E A b  

p = -  ‘ ( b l u + h v ) + -  2 ( b 2 u - h v )  

Q = ‘+(b,u+hv)+- ( - b , u + h v )  

L: 

Ll L; 

E A h  

If these equations are solved for the displacements u and v, the resulting relations are identical to 
those derived by means of Castigliano’s theorem on deflections for linearly elastic materials (Sections 
5.3 and 5.4). 
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5.2 CASTIGLIANO’S THEOREM ON DEFLECTIONS 

The derivation of Castigliano’s theorem on deflections is based on the concept of comple- 
mentary energy C of the system. Consequently, the theorem is sometimes called the “princi- 
ple of complementary energy.” The complementary energy C is equal to the strain energy U 
in the case of linear material response. However, for nonlinear material response, comple- 
mentary energy and strain energy are not equal (see Figure 5.1 and also Figure 3.1). 

In the derivation of Castigliano’s theorem, the complementary energy C is regarded 
as a function of generalized forces (F, ,  F2, . . ., Fp) that act on a system that is mounted on 
rigid supports (say the beam in Figure 5.2). The complementary energy C depends also on 
distributed loads that act on the beam, as well as the weight of the beam. However, these 
distributed forces do not enter explicitly into consideration in the derivation. In addition, 
the beam may be subjected to temperature effects (e.g., thermal strains; see Boresi and 
Chong, 2000; Chapter 4), which are not considered here. 

Castigliano’s theorem may be stated generally as follows (Langhaar, 1989; Section 4.10): 

If an elastic system is supported so that rigid-body displacements of the system 
are prevented, and if certain concentrated forces of magnitudes F l ,  F,, . . ., Fp 
act on the system, in addition to distributed loads and thermal strains, the dis- 
placement component qi of the point of application of the force Fi, is determined 
by the equation 

Gc qi = _, dFi 
i = 1 , 2  ,..., p (5.2) 

Note the similarity of Eqs. 5,2 and 3.19. The relation given by Eq. 5.2 is sometimes referred 
to as Castigliano’s second theorem. With reference to Figure 5.2, the displacement q1 at the 
location of Fl in the direction of Fl is given by the relation q1 = dC/dF,. 

The derivation of Eq. 5.2 is based on the assumption of small displacements; there- 
fore, Castigliano’s theorem is restricted to small displacements of the structure. The com- 
plementary energy C of a structure composed of m members may be expressed by the 
relation 

rn 

i =  1 

where Cj  denotes the complementary energy of the ith member (Langhaar, 1989; Section 4.10). 
Castigliano’s theorem on deflections may be extended to compute the rotation of 

line elements in a system subjected to couples. For example, consider again a beam that is 
supported on rigid supports and subjected to external concentrated forces of magnitudes 
F , ,  F2, ..., Fp (Figure 5.3). Let two of the concentrated forces (Fl, F2) be parallel, lie in a 
principal plane of the cross section, have opposite senses, and act perpendicular to the 

F2 
Fl 

FIGURE 5.2 Beam on rigid supports. 
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F3 
Fl F2 FP 

(b) 

FIGURE 5.3 (a) Beam before deformation. (b)  Beam after deformation. 

ends of a line element of length b in the beam (Figure 5 . 3 ~ ~ ) .  Then, Eq. 5.2 shows that the 
rotation 8 (Figure 5.3b) of the line segment resulting from the deformations is given by the 
relation 

where we have employed the condition of small displacements. To interpret this result, we 
employ the chain rule of partial differentiation of the complementary energy function C with 
respect to a scalar variable S. Considering the magnitudes of F ,  and F2 to be functions of S, 
we have by the chain rule 

In particular, we take the variable S equal to F l  and F2, that is, S = F ,  = F2 = F, where F 
denotes the magnitudes of F l  and F2. Then, dF@ = dFd& = 1 ,  and we obtain by Eq. (b) 

Consequently, Eqs. (a) and (c) yield e=;- 1dc 

and since the equal and opposite forces Fl, F2 constitute a couple of magnitude M = bF, Eq. 
(d) may be written in the form 8 = dc/dM. More generally, for couples Mi and rotations ei, 
we may write 

i = 1,2, ..., s dc 8. = - ' dM,' (5 .3)  

Hence, Eq. 5.3 determines the angular displacement 8, of the arm of a couple of magnitude 
Mi that acts on an elastic structure. The sense of 8, is the same as that of the couple Mi. 

Whereas Eqs. 5.2 and 5.3 are restricted to small displacements, they may be applied to 
structures that possess nonlinear elastic material behavior (Langhaar, 1989). The following 
example problem indicates the application of Eq. 5.2 for nonlinear elastic material behavior. 
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EXAMPLE 5.2 
Equilibrium of a 

Nonlinear Elastic 
Two-Bar System 

Solution 

Let the two bars in Figure E5.1 be made of a nonlinear elastic material whose stress-strain diagram is 
approximated by the relation E = e0 sinh(o/oo), where q, and oo are material constants (Figure E5.2). 
The system is subjected to known loads P and Q. By means of Castigliano's theorem on deflections, 
determine the small displacement components u and v. Let P = 10.0 kN, Q = 30.0 kN, oo = 70.0 MPa, 
E,, = 0.001, b, = h = 400 mm, b2 = 300 mm, and A ,  =A2  = 300 mm2. Show that the values for u and v 
agree with those obtained by a direct application of equations of equilibrium and the consideration of 
the geometry of the deformed bars. 
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FIGURE E5.2 

Let N1 and N2 be the tensions in bars AEl and CB. From the equilibrium conditions for pin B, we find 

L 1 t Qb2 + Ph) 
htb,+ 4) N ,  = 

The complementary energy C for the system is equal to the sum of the complementary energies for 
the two bars. Thus, 

Nl N 2  

C = Cl + C 2  = j e l d N l  + j e2dNz 
0 0 

With el = E,L, and e2 = e2L2, Eq. (b) becomes 

N2 
Aloe A2 00 

N 2  N N ,  
C = L , E o s i n h ~ d N l  + L2~O~inh-dN2 

0 

The displacement components u and v are obtained by substitution of Eq. (c) into Eq. 5.2. Thus, we 
find 

The partial derivatives of N, and N2 with respect to P and Q are obtained by means of Eqs. (a). Taking 
derivatives and substituting into Eqs. (d), we obtain 



Substitution of values for P, Q, oo, 6, bl, b,, h, A,,  and A, gives, with Eq. (a) of Example 5.1, 

u = 0.4709 mm 
v = 0.8119 mm 

An alternate method of calculating u and v is as follows: Determine tensions N l  and N ,  in the two 
bars by Eqs. (a); next, determine elongations el and e2 for the two bars and use these values of el and 
e2 along with geometric relations to calculate values for u and v. Equations (a) give N ,  = 26.268 kN 
and N, = 14.286 kN. Elongations el and e2 are given by the relations 

Nl 26 268 el  = LIEOsinh- = 565.68(0.001)sinh- = 0.9071 mm 
A100 300( 70) 

N ,  14 286 e2 = Lzeosinh- = 500.00(0.001)sinh- = 0.3670mm 
Azoo 300( 70) 

With el and e2 known, values of u and v are given by the following geometric relations: 

elcos$ - ezcosB 
sin Bcos $ + cos Bsin $ 

elsin$ + ezcosB 
sin Bcos $ + cos Bsin $ 

u =  = 0.4709 mm 

v =  = 0.8119 mm 

These values of u and v agree with those of Eqs. (f). Thus, Eq. 5.2 gives the correct values of u and v 
for this problem of nonlinear material behavior. 

5.3 CASTIGLIANO'S THEOREM ON DEFLECTIONS 
FOR LINEAR LOAD-DEFLECTION RELATIONS 

In the remainder of this chapter we limit our consideration mainly to linear elastic material 
behavior and small displacements. Then, the resulting load-deflection relation for either a 
member or structure is linear, the strain energy U is equal to the complementary energy C, 
and the principle of superposition applies. Then, Eqs. 5.2 and 5.3 may be written 

q . = -  t3U i = l , 2  ,..., p 
dFi' 

t3U 
dMi 8. = -, i = 1 ,2  )..., s 

(5.4) 

(5.5) 

where U = U (F1, F2, O, Fp, M I ,  M2, O, M,). 
The strain energy U is 

u = J U o d V  
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where Uo is the strain-energy density. In the remainder of this chapter we restrict ourselves 
to linear elastic, isotropic, homogeneous materials for which the strain-energy density is 
(see Eq. 3.33) 

With load-stress formulas derived for the members of the structure, U, may be expressed 
in terms of the loads that act on the structure. Then, Eq. 5.6 gives U as a function of the 
loads. Equations 5.4 and 5.5 can then be used to obtain displacements at the points of 
application of the concentrated forces or the rotations in the direction of the concentrated 
moments. Three types of loads are considered in this chapter for the various members of a 
structure: 1. axial loading, 2. bending of beams, and 3. torsion. In practice, it is convenient 
to obtain the strain energy for each type of load acting alone and then add together these 
strain energies to obtain the total strain energy U, instead of using load-stress formulas 
and Eqs. 5.6 and 5.7 to obtain U. 

5.3.1 

The equation for the total strain energy UN resulting from axial loading is derived for the ten- 
sion members shown in Figures 5 . 4 ~  and 5.4d. In general, the cross-sectional area A of the 
tension member may vary slowly with axial coordinate z .  The line of action of the loads (the 
z axis) passes through the centroid of every cross section of the tension member. Consider 
two sections BC and DF of the tension member in Figure 5.4a at distance dz apart. After the 
loads are applied, these sections are displaced to B*C* and D*F* (shown by the enlarged 
free-body diagram in Figure 5.4b) and the original length dz has elongated an amount de,. 
For linear elastic material behavior, de, varies linearly with N as indicated in Figure 5 . 4 ~ .  
The shaded area below the straight line is equal to the strain energy dUN for the segment dz 
of the tension member. The total strain energy UN for the tension member becomes 

Strain Energy UN for Axial Loading 

U ,  = I d U ,  = J - N d e ,  1 
2 

(a)  (4 
FIGURE 5.4 Strain energy resulting from axial loading of member. 
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Noting that de, = ezzdz and assuming that the cross-sectional area varies slowly, we have 
eZz = ozz/E and o,, = N/A, where A is the cross-sectional area of the member at section z .  
Then, we write U, in the form 

N 2  
L 

'N = jmdz 
0 

(5.8) 

At abrupt changes in material properties, load, and cross section, the values of E,  N ,  and A 
change abruptly (see Figure 5.4d). Then, we must account approximately for these 
changes by writing U ,  in the form 

where an abrupt change in load occurs at L, and an abrupt change in cross-sectional area 
occurs at L,. The subscripts 1,2,3 refer to properties in parts 1,2 ,3  of the member (Figure 5.4d). 

Strain Energy for Axially Loaded Springs 
Consider an elastic spring subjected to an axial force Q (Figure 5%). The load-deflection 
curve for the spring is not necessarily linear (Figure 5.5b). The external force Q is applied 
slowly so that it remains in equilibrium with the internal tension force F in the spring. The 
potential energy U of the axially loaded spring that undergoes an axial elongation 6 is 
defined as the work that Q performs under the elongation 6. Thus, by Figure 5Sb, 

6 
U = SdU = I Q d x  

0 

Similarly, by Figure 5Sb, the complementary strain energy C of the spring is 

P 
C = IdC = I x d Q  

0 

For a linear spring (Figure 5.5c), C = U. Hence, we may write 
6 

U = C = S Q d x  

(5.10) 

(5.1 1) 

(a) (b) (C) 

FIGURE 5.5 (a) Axially loaded spring. (b) Nonlinear load-elongation response. (c) Linear load- 
elongation response. 
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Also, for a linear spring, the internal tension force is F = kx, where k is a spring con- 
stant [F/L] and x is the elongation of the spring from its initially unstretched length Lo. 
Since for equilibrium, F = Q, 

2 
0 0 

(5.12) 

The magnitude of the energy that a spring can absorb is a function of its elongation 6, and 
it is important in certain mechanical designs. For example, springs are commonly used to 
absorb energy in vehicles (automobiles and aircraft) when they are subjected to impact 
loads (rough roads and landings). 

5.3.2 Strain Energies UM and Us for Beams 

Consider a beam of uniform (or slowly varying) cross section, as in Figure 5 . 6 ~ .  We take 
the (x,  y, z )  axes with origin at the centroid of the cross section and with the z axis along 
the axis of the beam, the y axis down, and the x axis normal to the plane of the paper. The 
(x, y )  axes are assumed to be principal axes for each cross section of the beam (see Appen- 
dix B). The loads P, Q, and R are assumed to lie in the 6, z )  plane. The flexure formula 

is assumed to hold, where M, is the internal bending moment with respect to the principal x 
axis, Z, is the moment of inertia of the cross section at z about the x axis, and y is measured from 
the (x, z )  plane. Consider two sections BC and DF of the unloaded beam at distance dz apart. 
After the loads are applied to the beam, plane sections BC and DF are displaced to B*C* and 
D*F* and are assumed to remain plane. An enlarged free-body diagram of the deformed beam 
segment is shown in Figure 5.6b. M, causes plane D*F* to rotate through angle d$ with respect 
to B*C*. For linear elastic material behavior, dg varies linearly with M, as indicated in Figure 
5 .6~ .  The shaded area below the inclined straight line is equal to the strain energy dUM result- 
ing from bending of the beam segment dz . An additional strain energy dUs caused by the shear 
Vy is considered later. The strain energy UM for the beam caused by M, becomes 

Noting that d$ = deJy and de, = Ezzdz, and assuming that E,, = o,/E and o,, = M,yII,, we 
may write UM in the form 

A 

= I, dz (5.13) 

where in general M, is a function of z .  Equation 5.13 represents the strain energy resulting from 
bending about the x axis. A similar relation is valid for bending about the y axis for loads lying 
in the (x, z )  plane. For abrupt changes in material E, moment M,, or moment of inertia Z,, the 
value of UM may be computed following the same procedure as for Up, (Eq. 5.9). 

Equation 5.13 is exact for pure bending but is only approximate for shear loading as 
indicated in Figure 5 . 6 ~ .  However, more exact solutions and experimental data indicate 
that Eq. 5.13 is fairly accurate, except for relatively short beams. 

An exact expression for the strain energy Us resulting from shear loading of a beam 
is difficult to obtain. Consequently, an approximate expression for Us is often used. When 
corrected by an appropriate coefficient, the use of this approximate expression often leads 
to fairly reliable results. The correction coefficients are discussed later. 
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( C )  

FIGURE 5.0 Strain energy resulting from bending and shear. 

Because of the shear V, (Figure 5.6b), shear stresses ozy are developed in each cross 
section; the magnitude of oq is zero at both the top and bottom of the beam since the beam 
is not subjected to shear loads on the top or bottom surfaces. We define an average value of 
ozy as z = Vy/A. We assume that this average shear stress acts over the entire beam cross 
section (Figure 5.6d) and, for convenience, assume that the beam cross section is rectangu- 
lar with thickness b. Because of the shear, the displacement of face D*F* with respect to 
face B*C* is de,. For linear elastic material behavior, de, varies linearly with V,, as indi- 
cated in Figure 5.6e. The shaded area below the inclined straight line is equal to the strain 
energy dUi for the beam segment dz. A correction coefficient k is now defined such that 
the exact expression for the shear strain energy dUs of the element is equal to kdUi . Then, 
the shear strain energy Us for the beam resulting from shear Vy is 

Noting that de, = ydz and assuming that y= z/G and z= V,/A, we may write Us in the form 

kV2 
U -I’dz ’- 2GA 

(5.14) 

Quation 5.14 represents the strain energy for shear loading of a beam. The value of Vy is gen- 
erally a function of z .  Also, the cross-sectional area A may vary slowly with z .  For abrupt 
changes in material E, shear V,, or cross-sectional area A, the value of Us may be computed 
following the same procedure as for UN (Eq. 5.9). 

An exact expression of Us may be obtained, provided the exact shear stress distribu- 
tion ozy is known. Then substitution of oq into Eq. 5.7 to obtain Uo (with the other stress 
components being zero) and then substitution into Eq. 5.6 yields Us. However, the exact 
distribution of ozy is often difficult to obtain, and approximate distributions are used. For 
example, consider a segment dy of thickness b of a beam cross section. In the engineering 
theory of beams, the stress component oq is assumed to be uniform over thickness b. With 
this assumption (see Section 1 . 1 )  
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TABLE 5.1 Correction Coefficients 
for Strain Energy Due to Shear 

Beam cross section k 

Thin rectanglea 1.20 
Solid circularb 1.33 
Thin-wall circularb 2.00 
I-section, channel, box-sectionc 1.00 

aExact value. 
bCalculated as the ratio of the shear stress at the neu- 
tral surface to the average shear stress. 
T h e  area A for the I-section, channel, or box-section is 
the area of the web hb, where h is  the section depth 
and b the web thickness. The load is applied perpendic- 
ular to the axis of the beam and in the plane of the web. 

where Q is the first moment about the x axis of the area above the line of length b with ordinate 
y .  Generally, ozy is not uniform over thickness b. Nevertheless, if for a beam of rectangular 
cross section, one assumes that oq is uniform over b, it may be shown that k = 1.20. 

Exact values of k are not generally available. Fortunately, in practical problems, the 
shear strain energy Us is often small compared to U,. Hence, for practical problems, the 
need for exact values of Us is not critical. Consequently, as an expedient approximation, 
the correction coefficient k in Eq. 5.14 may be obtained as the ratio of the shear stress at 
the neutral surface of the beam calculated using V,Q/I> to the average shear stress Vy/A. 
For example, by this procedure, the magnitude of k for the rectangular cross section is 

(5.15) 

This value is larger and hence more conservative than the more exact value 1.20. Neverthe- 
less, since the more precise value is known, we recommend that k = 1.20 be used for rectan- 
gular cross sections. Values of k are listed in Table 5.1 for several beam cross sections. 

5.3.3 Strain Energy UTfor Torsion 

The strain energy U, for a torsion member with circular cross section (Figure 5 . 7 ~ )  may be 
derived as follows: Let the z axis lie along the centroidal axis of the torsion member. Before 
torsional loads TI  and T2 are applied, sections BC and DF are a distance dz apart. After the 
torsional loads are applied, these sections become sections B*C* and D*F*, with section 

(a) 

FIGURE 5.7 Strain energy resulting from torsion. 
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EXAMPLE 5.3 
Linear Spring- 

Weight System 

Solution 

D*F* rotated relative to section B*C* through the angle dp, as shown in the enlarged free- 
body diagram of the element of length dz (Figure 5.7b). For linear elastic material behavior, 
d p  varies linearly with T (Figure 5.7~). The shaded area below the inclined straight line is 
equal to the torsional strain energy dUT for the segment dz of the torsion member. Hence, the 
total torsional strain energy UT for the torsional member becomes 

Noting that b d p  = ydz and assuming that y=  z/G and Z= Tb/J (where b is the radius and J is 
the polar moment of inertia of the cross section), we may write UT in the form 

(5.16) 

Equation 5.16 represents the strain energy for a torsion member with circular cross section. 
The unit angle of twist 8 for a torsion member of circular cross section is given by 8 = TIGJ. 
Torsion of noncircular cross sections is treated in Chapter 6. Equation 5.16 is valid for other 
cross sections if the unit angle of twist 8 for a given cross section replaces T/GJ in Eq. 5.16. 
For abrupt changes in material E, torsional load T, or polar moment of inertia J, the value of 
UT may be computed following the same procedure as for U, (Eq. 5.9). 

Consider weights W, and W2 supported by the linear springs shown in Figure E5.3. The spring con- 
stants are k ,  and k,. Determine the displacements q1 and q2 of the weights as functions of W,, W2, k l ,  
and k2. Assume that the weights are applied slowly so that the system is always in equilibrium as the 
springs are stretched from their initially unstretched lengths. 

FIGURE E5.3 

Under the displacements q1 and q2, spring 1 undergoes an elongation q1 and spring 2 undergoes an 
elongation q2 - q,.  Hence, by Eq. 5.12, the potential energy stored in the springs is 

The internal tension forces in springs 1 and 2 are 

F ,  = k , q , ,  F ,  = k , ( q , - q , )  

But by equilibrium, 

F ,  = W ,  i- W 2 ,  F 2  = W 2  
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EXAMPLE 5.4 
Nonlinear Spring 

System 

Solution 

Then, by Eqs. (a)-(c), the potential energy in terms of W,, W2, k,, and k2 is 

I(W1 + W2I2 1 w; u = -  + - -  
2 kl 2 k2 

au - W l  + W 2  
kl 

au W l + W 2  W2 q 2 = - = -  +- 
aw2 kl k2 

Equation (e) agrees with a direct solution of Eqs. (b) and (c), without consideration of potential 
energy. 

By Eqs. 5.4 and (d), we obtain 

(el 
q l=aw, - -  

Assume that the force-elongation relation for the springs of Example 5.3 is 

(4 2 F = kx 

Determine the displacements q1 and q2 of the weights as functions of W1, W2, k,, and k2 

1 /2 

x = [$ 
Hence, by Eqs. 5.1 1 and (b), the complementary strain energy of the system is 

or 

By equilibrium, as in Example 5.3, 

F ,  = W l + W 2 ,  F ,  = W ,  

So, Eqs. (c) and (d) yield 

2 ( W ,  + w2)3/2  w y 2  
c = - [  3 k:l2 +-I kk/2 

Then, by Eqs. 5.2 and (e), we obtain 

w, + w, 
41 = - m1 = [7-] 
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5.4 DEFLECTIONS OF STATICALLY DETERMINATE 
STRUCTURES 

In the analysis of many engineering structures, the equations of static equilibrium are both 
necessary and sufficient to solve for unknown reactions and for internal actions in the 
members of the structure. For example, the simple structure shown in Figure E5.1 is such 
a structure; the equations of static equilibrium are sufficient to solve for the tensions N ,  
and N ,  in members AB and CB, respectively. Structures for which the equations of static 
equilibrium are sufficient to determine the unknown tensions, shears, etc., uniquely are 
said to be statically determinate structures. Implied in the expression “statically determi- 
nate” is the condition that the deflections caused by the loads are so small that the geome- 
try of the initially unloaded structure remains essentially unchanged and the angles 
between members are essentially constant. If these conditions were not true, the internal 
tensions, etc., could not be determined without including the effects of the deformation 
and, hence, they could not be determined solely from the equations of equilibrium. 

The truss shown in Figure 5.8 is a statically determinate truss. A physical character- 
istic of a statically determinate structure is that every member is essential for the proper 
functioning of the structure under the various loads to which it is subjected. For example, 
if member AC were to be removed from the truss of Figure 5.8, the truss would collapse. 

Often, additional members are added to structures to stiffen the structure (reduce 
deflections), to strengthen the structure (increase its load-canying capacity), or to provide 
alternate load paths (in the event of failure of one or more members). For example, for 
such purposes an additional diagonal member BD may be added to the truss of Figure 5.8; 
see Figure 5.9. Since the equations of static equilibrium are just sufficient for the analysis 
of the truss of Figure 5.8, they are not adequate for the analysis of the truss of Figure 5.9. 
Accordingly, the truss of Figure 5.9 is said to be a statically indeterminate structure. The 
analysis of statically indeterminate structures requires additional information (additional 
equations) beyond that obtained from the equations of static equilibrium. 

lQ 

FIGURE 5.8 Statically determinate truss. 

Ql 

FIGURE 5.9 Statically indeterminate truss. 
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In this section, the analysis of statically determinate structures is discussed. The 
analysis of statically indeterminate structures is presented in Section 5.5. 

The strain energy U for a structure is equal to the sum of the strain energies of its 
members. The loading for thejth member of the structure is assumed to be such that the 
strain energy Uj  for that member is 

where UNj, UMj, Usj, and UTj are given by Eqs. 5.8, 5.13, 5.14, and 5.16, respectively. In 
the remainder of this chapter the limitations placed on the member cross section in the der- 
ivation of each of the components of the strain energy are assumed to apply. For instance, 
each beam is assumed to undergo bending about a principal axis of the beam cross section 
(see Appendix B and Chapter 7); Eqs. 5.13 and 5.14 are valid only for bending about a 
principal axis. For simplicity, we consider bending about the x axis (taken to be a principal 
axis) and let M, = M and Vy = V 

With the total strain energy U of the structure known, the deflection q, of the struc- 
ture at the location of a concentrated force Fi in the direction of Fi is (see Eq. 5.4) 

(5.17) 

and the angle (slope) change 0, of the structure at the location of a concentrated moment 
Mi in the direction of Mi is (see Eq. 5.5) 

(5.18) 

where m is the number of members in the structure. Use of Castigliano’s theorem on 
deflections, as expressed in Eqs. 5.17 and 5.18, to determine deflections or rotations at the 
location of a concentrated force or moment is outlined in the following procedure: 

1. Write an expression for each of the internal actions (axial force, shear, moment, and 
torque) in each member of the structure in terms of the applied external loads. 

2. To determine the deflection qi of the structure at the location of a concentrated force 
Fi and in the directed sense of Fi, differentiate each of the internal action expres- 
sions with respect to Fi. Similarly, to determine the rotation 0, of the structure at the 
location of a concentrated moment Mi and in the directed sense of Mi, differentiate 
each of the internal action expressions with respect to M , .  
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3. Substitute the expressions for internal actions obtained in Step 1 and the derivatives 
obtained in Step 2 into Eq. 5.17 or 5.18 and perform the integration. The result is a 
relationship between the deflection qi (or rotation Oi) and the externally applied loads. 

4. Substitute the magnitudes of the external loads into the result obtained in Step 3 to 
obtain a numerical value for the displacement qi or rotation Oi. 

5.4.1 Curved Beams Treated as Straight Beams 

The strain energy resulting from bending (see Eq. 5.13) was derived by assuming that the beam is 
straight. The magnitude of U, for curved beams is derived in Chapter 9, where it is shown that 
the error in using Eq. 5.13 to determine U, is negligible as long as the radius of curvature of the 
beam is more than twice its depth. Consider the curved beam in Figure 5.10 whose strain energy 
is the sum of UN, Us, and U,, each of which is caused by the same load P. If the radius of curva- 
ture R of the curved beam is large compared to the beam depth, the magnitudes of UN and Us will 
be small compared to U, and can be neglected. We assume that UN and Us can be neglected 
when the ratio of length to depth is greater than 10. The resulting error is often less than 1% and 
will seldom exceed 5%. Numerical results are obtained in Examples 5.9 and 5.10. 

FIGURE 5.10 Curved cantilever beam. 

EXAMPLE 5.5 
End Load on a 

Determine the deflection under load P of the cantilever beam shown in Figure E5.5. Assume that the 
beam length L is more than five times the beam depth h. 

Cantilever Beam I 
I 

FIGURE E5.5 End-loaded cantilever beam. 

Solution Since L > 5h, the strain energy Us is small and will be neglected. Therefore, the total strain energy is I (Eq. 5.13) 

u = u , =  
0 

By Castigliano’s theorem, the deflection qp is (Eq. 5.2) 

0 

By Figure E5.5, M, = Pz. Therefore, aM,/dP = z, and by Eq. (b), we find I 
PL3 L 2  P z  qp = j-dz = - 

E I ,  3E1, 
0 

I This result agrees with elementary beam theory. 
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EXAMPLE 5.€ 
Cantilever Bean 

Loaded ir 
Its Plant 

Solution 

The cantilever beam in Figure E5.6 has a rectangular cross section and is subjected to equal loads P at 
the free end and at the center as shown. 

O = P  

C : B A 

-I 2 4  

FIGURE E5.6 

(a) Determine the deflection of the free end of the beam. 

(b) What is the error in neglecting the strain energy resulting from shear if the beam length L is five 
times the beam depth h? Assume that the beam is made of steel (E = 200 GPa and G = 77.5 GPa). 

(a) To determine the dependencies of the shear V and moment M on the end load P, it is necessary to 
distinguish between the loads at A and B. Let the load at B be designated by Q .  The moment and shear 
functions are continuous from A to B and from B to C. From A to B, we have 

V = P ,  * % - l  
* .  z - 

dM M = Pz,  . “ a p = z  
From B to C, we have 

V = P + Q ,  .. * g = 1 

dM - L ‘ M = P z + -  [ ;) + Q Z ,  . . = = z + -  * 
2 

where we have chosen point B as the origin of coordinate Z for the length from B to C. Equation 5.17 
gives (with Q = P and k = 1.2) 

(b) Since the beam has a rectangular section, A = bh and I = bh3/12. Equation (a) can be rewritten as follows: 

EbqP - 1.8LE + 7(  12)L3 - - -  - 
Gh 16h3 P 

- - 1.8(5)(200) + 7(12)(S3)  
77.5 16 

= 23.23 + 656.25 
= 679.48 

Therefore, the error in neglecting shear term is 23.23(100) = 3.42% 
679.48 

Alternatively, one could have used the approximate value k = 1.50 (Eq. 5.15). Then the estimate of 
shear contribution would have been increased by the ratio 1.50/1.20 = 1.25. Overall the shear contri- 
bution would still remain small. 
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EXAMPLE 5.7 
A Shaft-Beam 

Mechanism 

Solution 

EXAMPLE 5.8 
Uniformly 

Loaded 
Cantilever Beam 

A shaft AB is attached to the beam CDFH, see Figure E5.7. A torque of 2.00 kN m is applied to the 
end B of the shaft. Determine the rotation of section B. The shaft and beam are made of an aluminum 
alloy for which E = 72.0 GPa and G = 27.0 GPa. Assume that the hub DF is rigid. 

2 k N - r n  

FIGURE E5.7 Shaft-beam mechanism. 

Since the beam is slender, the strain energy resulting from shear can be neglected. Hence, the total 
strain energy of the mechanism is 

The pin reactions at C and H have the same magnitude but opposite sense. Therefore, moment equi- 
librium yields the result 

H = C = T/lOOO (b) 

By Castigliano's theorem, the angular rotation at B is 

By Figure E5.7 and Eq. (b), we have 

T = 2,000,000 N mm, M, = Czl = O.OOITzl [N mm] ( 4  

With I ,  = (30)(40)3/12 = 160,000 mm4 and J = ?~(60)~/32 = 1.272 x lo6 mm4, Eqs. (c) and (d) yield 
9, = 0.054 rad. 

The cantilever beam in Figure E5.8~ is subjected to a uniformly distributed load w. Determine the 
deflection of the free end. Neglect the shear strain energy Us. 

(a)  

FIGURE E5.8 Uniformly loaded cantilever beam. I 
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Solution 

EXAMPLE 5.9 
Curved Beam 

Loaded in 
Its Plane 

Solution 

Since there is no force acting at the free end, we introduce the fictitious force P (Figure E5.8b). (See 
the discussion in Section 5.4.2.) Hence, the deflection qp at the free end is given by (see Eq. 5.2) 

(a) 
P = O  

The bending moment M, caused by P and w is 

(b) 
1 2  
2 

M, = Pz+-wz 

and 

dM,  - = z  
dP 

Substitution of Eqs. (b) and (c) into Eq. (a) yields 

L 4 1 WL 
qp = - ~ ( P z  + iwz2) / z  dz = - 8EI,  

P = O  E I x  

This result agrees with elementary beam theory. 

The curved beam in Figure E5.9 has a 30-mm square cross section and radius of curvature R = 65 111111. 
The beam is made of a steel for which E = 200 GPa and v = 0.29. 

(a) If P = 6.00 kN, determine the deflection of the free end of the curved beam in the direction of P. 

(b) What is the error in the deflection if U, and Us are neglected? 

FIGURE E5.9 

The shear modulus for the steel is G = E/[2( 1 + v)] = 77.5 GPa. 

(a) It is convenient to use polar coordinates. For a cross section of the curved beam located at angle 8 
from the section on which P is applied (Figure E5.9), 

Z!! = case 

dP = sine (a) 

dP 
N = pcose, 

V = Psino, 

dM 
dP 

M = PR(i-cose), - = R(i-cose) 
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1 Substitution into Eq. 5.17 gives 
I 

EXAMPLE 5.10 
Semicircular 

Cantilever Beam 

3 d 2  3 d 2  
cos8)R d8+ 1 k P s i n ( s i n 8 ) R  d8 

GA 
0 0 

3 d 2  
+ P R ( 1 ~ ~ e ) R ( 1 - c o s 8 ) R  d8 

0 
1 1 

2 2  2 2  
Using the trigonometric identities cos2 8 = 1 + - cos 28 and sin2 8 = 1 - - cos 28, we find that 

3zPR + 1.2(3n)PR + 
4GA 4 p  = - 4EA 

- - 3~(65)(6000) + 1.2(3z)(65)(6000) + - + (65)3(6000)( 12) 

4(200x 103)(30)2 4(77,500)(30)2 [' 1,200 x 1 ~ ) ~ ) ( 3 0 ) ~  
= 0.0051 + 0.0158 + 1.1069 = 1.1278 

(b) If U, and Us are neglected, 

qp = 1.1069mm 

and the percentage error in the deflection calculation is 

(1.1278 - 1.1069)100 - 1.85% error = - 
1.1278 

This error is small enough to be neglected for most engineering applications. The ratio of length to 
depth for this beam is 3z(65)/[2(30)] = 10.2 (see Section 5.4.1). 

The semicircular cantilever beam in Figure E5.10 has a radius of curvature R and a circular cross sec- 
tion of diameter d. It is subjected to loads of magnitude P at points B and C. 

P I  
FIGURE E5.10 

(a) Determine the vertical deflection at C in terms of P, modulus of elasticity E, shear modulus G, 
radius of curvature R, cross-sectional area A, and moment of inertia of the cross section 1. 

(b) Let P = 150 N, R = 200 mm, d = 20.0 mm, E = 200 GPa, and G = 77.5 GPa. Determine the effect 
of neglecting the strain energy Us due to shear. 
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Solution (a) Since we wish to determine the vertical deflection at C, the contribution to the total strain energy 
of the load at C must be distinguished from the contribution of the load at B. Therefore, as in Example 
5.6, we denote the load P at B by Q (= P in magnitude) (Figure E5.10). For section BC, we have 

N = P C O S ~ ,  

V = Psing, 

M = PR( 1 - COS~), 

For section AB, we have 

N = (P+Q)sin6, 

V = (P+Q)cos6, 

M = PR(l+sin6)+QRsin6, 

i!! = COSQ 

= sin4 

dP 

ap 

- -  ah' - R( l -  cosq) 
dP 

Substitution of Eqs. (a) and (b) into Eq. 5.17 yields, with k = 1.33, 

znPR2(1 - COS4)' "'(P + Q)sin26 Rde 
Rd'+ I EA '1 0 EI 0 

"'1.33(P + Q)cos26 Rde '1 0 GA 

""PR(1 + sin6)+QRsin6 (1 Rde + I  0 E I  

Integration yields, if we note that Q = P, 

3aPR 3 n  133PR + qc = --+-L 
4 EA 4 GA 

The three terms on the right-hand side of Eq. (d) are the contributions of the axial force, shear, and 
moment, respectively, to the displacement qc. 

(b) For P = 150 N, R = 200 mm, d = 20.0 mm (hence, A = 314 mm' and I = 7850 mm4), E = 200 GPa, 
and G = 77.5 GPa, Eq. (d) yields 

qc = 0.0011 +0.0039 + 4.9666 = 4.97 mm 

where 0.001 1 is due to the axial force, 0.0039 is due to shear, and 4.9666 is due to moment. The con- 
tributions of axial load and shear are negligible. Since Rld = 200/20 = 10, this result confirms the 
statement at the end of Section 5.4.1. 

5.4.2 Dummy Load Method and Dummy Unit Load 
Method 

As illustrated in the preceding examples, Castigliano's theorem on deflections, as 
expressed in Eqs. 5.17 and 5.18, is useful for the determination of deflections and rotations 
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at the locations of concentrated forces and moments. Frequently, it is necessary to deter- 
mine the deflection or rotation at a location that has no corresponding external load (see 
Example 5.8). For example, we might want to know the rotation at the free end of a canti- 
lever beam that is subjected to concentrated loads at midspan and at the free end but has no 
concentrated moment at the free end (as is the case in Example 5.6). Castigliano’s theorem 
on deflections can be applied in these situations as well. The modified procedure, known 
as the dummy load method, is as follows: 

1. 

2. 

3. 

4. 

5. 

Apply a fictitious force Fi (or fictitious moment Mi) at the location and in the direc- 
tion of the displacement qi (or rotation ei) to be determined. 
Write an expression for each of the internal actions (axial force, shear, moment, and 
torque) in each member of the structure in terms of the applied external forces and 
moments, including the fictitious force (or moment). 
To determine the deflection qi of the structure at the location of a fictitious force Fi 
and in the sense of Fi, differentiate each of the internal action expressions with 
respect to Fi. Similarly, to determine the rotation ei of the structure at the location of 
a fictitious moment Mi and in the sense of Mi, differentiate each of the internal 
action expressions with respect to Mi. 
Substitute the expressions for the internal actions obtained in Step 2 and the deriva- 
tives obtained in Step 3 into Eq. 5.17 or 5.18 and perform the integration. The result 
is a relationship between the deflection qi (or rotation ei) and the externally applied 
loads, including the fictitious force Fi (or moment Mi). 
Since, in fact, the fictitious force (or moment) does not act on the structure, set its 
value to zero in the relation obtained in Step 4. Then substitute the numerical values 
of the external loads into this result to obtain the numerical value for the displace- 
ment qi (or rotation @). 

The name dummy load method derives from the procedure. A fictitious (or dummy) load is 
applied, its effect on internal actions is determined, and then it is removed. 

If the procedure is limited to small deflections of linear elastic structures (consisting 
of tension members, compression members, beams, and torsion bars), then the derivatives 
of the internal actions with respect to the fictitious loads are equivalent to the internal 
actions that result from a unit force (or unit moment) applied at the point of interest. When 
the method is used in this manner, it is referred to as the dummy unit load method. The net 
effect of this procedure is that it eliminates the differentiation in Eqs. 5.17 and 5.18. The 
internal actions (axial, shear, moment, and torque, respectively) in member j resulting 
from a unit force at location i may be represented as 

(5.19a) 

Similarly, the internal actions in member j resulting from a unit moment at location i may 
be represented as 

In the dummy unit load approach, Eqs. 5.17 and 5.18 take the form 

F F F qi = g [ , $ . $ d z + , - d z + , u d z +  N.n .. k.V.v . . M.m .. T.t u d z  . .  F 

j =  1 G j  Aj 5 zj I , ,  ] 

(5.19b) 

(5.20a) 
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