CHAPTER

APPLICATIONS

OF ENERGY METHODS

Abstract

nergy methods are used widely to obtain solutions to elasticity problems and determine deflections of structures and machines. Since energy is a scalar quantity, energy methods are sometimes called scalar methods. In this chapter, energy methods are employed to obtain elastic deflections of statically determinate structures and to determine redundant reactions and deflections of statically indeterminate structures. The applications of energy methods in this book are limited mainly to linearly elastic material behavior and small displacements. However, in Sections 5.1 and 5.2, energy methods are applied to two nonlinear problems to demonstrate their generality.

For the determination of the deflections of structures, two energy principles are presented: 1. the principle of stationary potential energy and 2. Castigliano's theorem on deflections.

5.1 PRINCIPLE OF STATIONARY POTENTIAL ENERGY

We employ the concept of generalized coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to describe the shape of a structure in equilibrium (Langhaar, 1989; Section 1.2). Since plane cross sections of the members are assumed to remain plane, the changes of the generalized coordinates denote the translation and rotation of the cross section of the member.

In this chapter, we consider applications in which a finite number of degrees of freedom, equal to the number of generalized coordinates, specifies the configuration of the system.

Consider a system with a finite number of degrees of freedom that has the equilibrium configuration ($x_{1}, x_{2}, \ldots, x_{n}$). A virtual (imagined) displacement is imposed such that the new configuration is ($x_{1}+\delta x_{1}, x_{2}+\delta x_{2}, \ldots, x_{n}+\delta x_{n}$), where ($\delta x_{1}, \delta x_{2}, \ldots, \delta x_{n}$) is the virtual displacement. ${ }^{1}$ The virtual work δW corresponding to the virtual displacement is given by

$$
\begin{equation*}
\delta W=Q_{1} \delta x_{1}+Q_{2} \delta x_{2}+\cdots+Q_{i} \delta x_{i}+\cdots+Q_{n} \delta x_{n} \tag{a}
\end{equation*}
$$

where $\left(Q_{1}, Q_{2}, \ldots, Q_{i}, \ldots, Q_{n}\right)$ are components of the generalized load. They are functions of the generalized coordinates. Let Q_{i} be defined for a given cross section of the structure;

[^0]Q_{i} is a force if δx_{i} is a translation of the cross section, and Q_{i} is a moment (or torque) if δx_{i} is a rotation of the cross section.

For a deformable body the virtual work δW corresponding to virtual displacement of a mechanical system may be separated into the sum

$$
\begin{equation*}
\delta W=\delta W_{\mathrm{e}}+\delta W_{\mathrm{i}} \tag{b}
\end{equation*}
$$

where δW_{e} is the virtual work of the external forces and δW_{i} is the virtual work of the internal forces.

Analogous to the expression for δW in Eq. (a), under a virtual displacement (δx_{1}, $\delta x_{2}, \ldots, \delta x_{n}$, we have

$$
\begin{equation*}
\delta W_{\mathrm{e}}=P_{1} \delta x_{1}+P_{2} \delta x_{2}+\cdots+P_{n} \delta x_{n} \tag{c}
\end{equation*}
$$

where $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ are functions of the generalized coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By analogy to the Q_{i} in Eq. (a), the functions ($P_{1}, P_{2}, \ldots, P_{n}$) are called the components of generalized external load. If the generalized coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote displacements and rotations that occur in a system, the variables ($P_{1}, P_{2}, \ldots, P_{n}$) may be identified as the components of the prescribed external forces and couples that act on the system.

Now imagine that the virtual displacement takes the system completely around any closed path. At the end of the closed path, we have $\delta x_{1}=\delta x_{2}=\cdots=\delta x_{n}=0$. Hence, by Eq. (c), $\delta W_{\mathrm{e}}=0$. In our applications, we consider only systems that undergo elastic behavior. Then the virtual work δW_{i} of the internal forces is equal to the negative of the virtual change in the elastic strain energy δU, that is,

$$
\begin{equation*}
\delta W_{\mathrm{i}}=-\delta U \tag{d}
\end{equation*}
$$

where $U=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the total strain energy of the system. Since the system travels around a closed path, it returns to its initial state and, hence, $\delta U=0$. Consequently, by Eq. (d), $\delta W_{\mathrm{i}}=0$. Accordingly, the total virtual work $\delta W[\mathrm{Eq}$. (b) $]$ also vanishes around a closed path. The condition $\delta W=0$ for virtual displacements that carry the system around a closed path indicates that the system is conservative. The condition $\delta W=0$ is known as the principle of stationary potential energy.

For a conservative system (e.g., elastic structure loaded by conservative external forces), the virtual change in strain energy δU of the structure under the virtual displacement $\left(\delta x_{1}, \delta x_{2}, \ldots, \delta x_{n}\right)$ is

$$
\begin{equation*}
\delta U=\frac{\partial U}{\partial x_{1}} \delta x_{1}+\frac{\partial U}{\partial x_{2}} \delta x_{2}+\cdots+\frac{\partial U}{\partial x_{n}} \delta x_{n} \tag{e}
\end{equation*}
$$

Then, Eqs. (a) through (e) yield the result

$$
\begin{aligned}
Q_{1} \delta x_{1}+Q_{2} \delta x_{2}+\cdots+Q_{n} \delta x_{n}= & P_{1} \delta x_{1}+P_{2} \delta x_{2}+\cdots+P_{n} \delta x_{n} \\
& -\frac{\partial U}{\partial x_{1}} \delta x_{1}-\frac{\partial U}{\partial x_{2}} \delta x_{2}-\cdots-\frac{\partial U}{\partial x_{n}} \delta x_{n}
\end{aligned}
$$

or

$$
\begin{equation*}
Q_{i}=P_{i}-\frac{\partial U}{\partial x_{i}}, \quad i=1,2, \ldots, n \tag{f}
\end{equation*}
$$

For any system with finite degrees of freedom, if the components Q_{i} of the generalized force vanish, then the system is in equilibrium. Therefore, by Eq. (f), an elastic system with n degrees of freedom is in equilibrium if (Langhaar, 1989; Section 1.9)

FIGURE 5.1 Nonlinear elastic load-elongation curve.

$$
\begin{equation*}
P_{i}=\frac{\partial U}{\partial x_{i}}, \quad i=1,2, \ldots, n \tag{5.1}
\end{equation*}
$$

The relation given in Eq. 5.1 is sometimes referred to as Castigliano's first theorem. For a structure, the strain energy U is obtained as the sum of the strain energies of the members of the structure. Note the similarity between Eqs. 5.1 and Eqs. 3.11.

As a simple example, consider a uniform bar loaded at its ends by an axial load P. Let the bar be made of a nonlinear elastic material with the load-elongation curve indicated in Figure 5.1. The area below the curve represents the total strain energy U stored in the bar, that is, $U=\int P d e$; then by Eq. $5.1, P=\partial U / \partial e$, where P is the generalized external force and e the generalized coordinate. If the load-elongation data for the bar are plotted as a stress-strain curve, the area below the curve is the strain-energy density U_{0} stored in the bar (see Figure 3.1). Then, $U_{0}=\int \sigma d \epsilon$ and, by Eqs. 3.11, $\sigma=\partial U_{0} / \partial \epsilon$.

Equation 5.1 is valid for nonlinear elastic (conservative) problems in which the nonlinearity is due either to finite geometry changes or material behavior, or both. The equation is also valid for systems with inelastic materials as long as the loading is monotonic and proportional. The following example problem indicates the application of Eq. 5.1 for finite geometry changes.

EXAMPLE 5.1 Equilibrium of a Linear Elastic Two-Bar System

Two bars $A B$ and $C B$ of lengths L_{1} and L_{2}, respectively, are attached to a rigid foundation at points A and C, as shown in Figure E5.1a. The cross-sectional area of bar $A B$ is A_{1} and that of bar $C B$ is A_{2}. The corresponding moduli of elasticity are E_{1} and E_{2}. Under the action of horizontal and vertical forces P and $Q, \operatorname{pin} B$ undergoes finite horizontal and vertical displacement with components u and v, respectively (Figure E5.1a). The bars $A B$ and $C B$ remain linearly elastic.
(a) Derive formulas for P and Q in terms of u and v.
(b) Let $E_{1} A_{1} / L_{1}=K_{1}=2.00 \mathrm{~N} / \mathrm{mm}$ and $E_{2} A_{2} / L_{2}=K_{2}=3.00 \mathrm{~N} / \mathrm{mm}$, and let $b_{1}=h=400 \mathrm{~mm}$ and $b_{2}=$ 300 mm . For $u=30 \mathrm{~mm}$ and $v=40 \mathrm{~mm}$, determine the values of P and Q using the formulas derived in part (a).
(c) Consider the equilibrium of the pin B in the displaced position B^{*} and verify the results of part (b).
(d) For small displacement components u and $v\left(u, v \ll L_{1}, L_{2}\right)$, linearize the formulas for P and Q derived in part (a).

(a)

FIGURE E5.1

Solution

(a) For this problem the generalized external forces are $P_{1}=P$ and $P_{2}=Q$ and the generalized coordinates are $x_{1}=u$ and $x_{2}=v$. For the geometry of Figure E5.1a, the elongations e_{1} and e_{2} of bars 1 (bar $A B$ with length L_{1}) and 2 (bar $C B$ with length L_{2}) can be obtained in terms of u and v as follows:

$$
\begin{array}{ll}
\left(L_{1}+e_{1}\right)^{2}=\left(b_{1}+u\right)^{2}+(h+v)^{2}, & L_{1}^{2}=b_{1}^{2}+h^{2} \tag{a}\\
\left(L_{2}+e_{2}\right)^{2}=\left(b_{2}-u\right)^{2}+(h+v)^{2}, & L_{2}^{2}=b_{2}^{2}+h^{2}
\end{array}
$$

Solving for $\left(e_{1}, e_{2}\right)$, we obtain

$$
\begin{align*}
& e_{1}=\sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}}-L_{1} \tag{b}\\
& e_{2}=\sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}}-L_{2}
\end{align*}
$$

Since each bar remains linearly elastic, the strain energies U_{1} and U_{2} of bars $A B$ and $C B$ are

$$
\begin{align*}
& U_{1}=\frac{1}{2} N_{1} e_{1}=\frac{E_{1} A_{1}}{2 L_{1}} e_{1}^{2} \\
& U_{2}=\frac{1}{2} N_{2} e_{2}=\frac{E_{2} A_{2}}{2 L_{2}} e_{2}^{2} \tag{c}
\end{align*}
$$

where N_{1} and N_{2} are the tension forces in the two bars. The elongations of the two bars are given by the relation $e_{i}=N_{i} L_{i} / E_{i} A_{i}$. The total strain energy U for the structure is equal to the sum $U_{1}+U_{2}$ of the strain energies of the two bars; therefore by Eqs. (c),

$$
\begin{equation*}
U=\frac{E_{1} A_{1}}{2 L_{1}} e_{1}^{2}+\frac{E_{2} A_{2}}{2 L_{2}} e_{2}^{2} \tag{d}
\end{equation*}
$$

The magnitudes of P and Q are obtained by differentiation of Eq. (d) with respect to u and v, respectively (see Eq. 5.1). Thus,

$$
\begin{align*}
& P=\frac{\partial U}{\partial u}=\frac{E_{1} A_{1} e_{1}}{L_{1}} \frac{\partial e_{1}}{\partial u}+\frac{E_{2} A_{2} e_{2}}{L_{2}} \frac{\partial e_{2}}{\partial u} \\
& Q=\frac{\partial U}{\partial v}=\frac{E_{1} A_{1} e_{1}}{L_{1}} \frac{\partial e_{1}}{\partial v}+\frac{E_{2} A_{2} e_{2}}{L_{2}} \frac{\partial e_{2}}{\partial v} \tag{e}
\end{align*}
$$

The partial derivatives of e_{1} and e_{2} with respect to u and v are obtained from Eqs. (b). Taking the derivatives and substituting in Eqs. (e), we find

$$
\begin{align*}
P= & \frac{E_{1} A_{1}\left(b_{1}+u\right)}{L_{1}} \frac{\sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}}-L_{1}}{\sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}}} \\
& -\frac{E_{2} A_{2}\left(b_{2}-u\right)}{L_{2}} \frac{\sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}-L_{2}}}{\sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}}} \\
Q= & \frac{E_{1} A_{1}(h+v)}{L_{1}} \frac{\sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}-L_{1}}}{\sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}}} \tag{f}\\
& +\frac{E_{2} A_{2}(h+v)}{L_{2}} \frac{\sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}}-L_{2}}{\sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}}}
\end{align*}
$$

(b) Substitution of the values $K_{1}, K_{2}, b_{1}, b_{2}, h, L_{1}, L_{2}, u$, and v into Eqs. (f) gives

$$
\begin{align*}
& P=43.8 \mathrm{~N} \\
& Q=112.4 \mathrm{~N} \tag{g}
\end{align*}
$$

(c) The values of P and Q may be verified by determining the tension forces N_{1} and N_{2} in the two bars, determining directions of the axes of the two bars for the deformed configuration, and applying equations of equilibrium to a free-body diagram of pin B^{*}. Elongations $e_{1}=49.54 \mathrm{~mm}$ and $e_{2}=16.24$ mm are given by Eqs. (b). The tension forces N_{1} and N_{2} are

$$
\begin{aligned}
& N_{1}=e_{1} K_{1}=99.08 \mathrm{~N} \\
& N_{2}=e_{2} K_{2}=48.72 \mathrm{~N}
\end{aligned}
$$

Angles θ^{*} and ϕ^{*} for the directions of the axes of the two bars for the deformed configurations are found to be 0.7739 and 0.5504 rad, respectively. The free-body diagram of pin B^{*} is shown in Figure E5.1b. The equations of equilibrium are

$$
\begin{aligned}
& \sum F_{x}=0=P-N_{1} \sin \theta^{*}+N_{2} \sin \phi^{*} ; \quad \text { hence, } P=43.8 \mathrm{~N} \\
& \sum F_{y}=0=Q-N_{1} \cos \theta^{*}-N_{2} \cos \phi^{*} ; \quad \text { hence, } Q=112.4 \mathrm{~N}
\end{aligned}
$$

These values of P and Q agree with those of Eqs. (g).
(d) If displacements u and v are very small compared to b_{1} and b_{2}, and, hence, with respect to L_{1} and L_{2}, simple approximate expressions for P and Q may be obtained. For example, we find by the binomial expansion to linear terms in u and v that

$$
\begin{aligned}
& \sqrt{\left(b_{1}+u\right)^{2}+(h+v)^{2}}=L_{1}+\frac{b_{1} u}{L_{1}}+\frac{h v}{L_{1}} \\
& \sqrt{\left(b_{2}-u\right)^{2}+(h+v)^{2}}=L_{2}-\frac{b_{2} u}{L_{2}}+\frac{h v}{L_{2}}
\end{aligned}
$$

With these approximations, Eqs. (f) yield the linear relations

$$
\begin{aligned}
& P=\frac{E_{1} A_{1} b_{1}}{L_{1}^{3}}\left(b_{1} u+h v\right)+\frac{E_{2} A_{2} b_{2}}{L_{2}^{3}}\left(b_{2} u-h v\right) \\
& Q=\frac{E_{1} A_{1} h}{L_{1}^{3}}\left(b_{1} u+h v\right)+\frac{E_{2} A_{2} h}{L_{2}^{3}}\left(-b_{2} u+h v\right)
\end{aligned}
$$

If these equations are solved for the displacements u and v, the resulting relations are identical to those derived by means of Castigliano's theorem on deflections for linearly elastic materials (Sections 5.3 and 5.4).

5.2 CASTIGLIANO'S THEOREM ON DEFLECTIONS

The derivation of Castigliano's theorem on deflections is based on the concept of complementary energy C of the system. Consequently, the theorem is sometimes called the "principle of complementary energy." The complementary energy C is equal to the strain energy U in the case of linear material response. However, for nonlinear material response, complementary energy and strain energy are not equal (see Figure 5.1 and also Figure 3.1).

In the derivation of Castigliano's theorem, the complementary energy C is regarded as a function of generalized forces $\left(F_{1}, F_{2}, \ldots, F_{p}\right)$ that act on a system that is mounted on rigid supports (say the beam in Figure 5.2). The complementary energy C depends also on distributed loads that act on the beam, as well as the weight of the beam. However, these distributed forces do not enter explicitly into consideration in the derivation. In addition, the beam may be subjected to temperature effects (e.g., thermal strains; see Boresi and Chong, 2000; Chapter 4), which are not considered here.

Castigliano's theorem may be stated generally as follows (Langhaar, 1989; Section 4.10):
If an elastic system is supported so that rigid-body displacements of the system are prevented, and if certain concentrated forces of magnitudes $F_{1}, F_{2}, \ldots, F_{p}$ act on the system, in addition to distributed loads and thermal strains, the displacement component q_{i} of the point of application of the force F_{i}, is determined by the equation

$$
\begin{equation*}
q_{i}=\frac{\partial C}{\partial F_{i}}, \quad i=1,2, \ldots, p \tag{5.2}
\end{equation*}
$$

Note the similarity of Eqs. 5.2 and 3.19. The relation given by Eq. 5.2 is sometimes referred to as Castigliano's second theorem. With reference to Figure 5.2, the displacement q_{1} at the location of F_{1} in the direction of F_{1} is given by the relation $q_{1}=\partial C / \partial F_{1}$.

The derivation of Eq. 5.2 is based on the assumption of small displacements; therefore, Castigliano's theorem is restricted to small displacements of the structure. The complementary energy C of a structure composed of m members may be expressed by the relation

$$
C=\sum_{i=1}^{m} C_{i}
$$

where C_{i} denotes the complementary energy of the i th member (Langhaar, 1989; Section 4.10).
Castigliano's theorem on deflections may be extended to compute the rotation of line elements in a system subjected to couples. For example, consider again a beam that is supported on rigid supports and subjected to external concentrated forces of magnitudes $F_{1}, F_{2}, \ldots, F_{p}$ (Figure 5.3). Let two of the concentrated forces $\left(F_{1}, F_{2}\right)$ be parallel, lie in a principal plane of the cross section, have opposite senses, and act perpendicular to the

FIGURE 5.2 Beam on rigid supports.

FIGURE 5.3 (a) Beam before deformation. (b) Beam after deformation.
ends of a line element of length b in the beam (Figure 5.3a). Then, Eq. 5.2 shows that the rotation θ (Figure 5.3b) of the line segment resulting from the deformations is given by the relation

$$
\begin{equation*}
\theta=\frac{1}{b} \frac{\partial C}{\partial F_{1}}+\frac{1}{b} \frac{\partial C}{\partial F_{2}} \tag{a}
\end{equation*}
$$

where we have employed the condition of small displacements. To interpret this result, we employ the chain rule of partial differentiation of the complementary energy function C with respect to a scalar variable S. Considering the magnitudes of F_{1} and F_{2} to be functions of S, we have by the chain rule

$$
\begin{equation*}
\frac{\partial C}{\partial S}=\frac{\partial C}{\partial F_{1}} \frac{\partial F_{1}}{\partial S}+\frac{\partial C}{\partial F_{2}} \frac{\partial F_{2}}{\partial S} \tag{b}
\end{equation*}
$$

In particular, we take the variable S equal to F_{1} and F_{2}, that is, $S=F_{1}=F_{2}=F$, where F denotes the magnitudes of F_{1} and F_{2}. Then, $\partial F_{1} / \partial S=\partial F_{2} / \partial S=1$, and we obtain by Eq. (b)

$$
\begin{equation*}
\frac{\partial C}{\partial F}=\frac{\partial C}{\partial F_{1}}+\frac{\partial C}{\partial F_{2}} \tag{c}
\end{equation*}
$$

Consequently, Eqs. (a) and (c) yield

$$
\begin{equation*}
\theta=\frac{1}{b} \frac{\partial C}{\partial F} \tag{d}
\end{equation*}
$$

and since the equal and opposite forces F_{1}, F_{2} constitute a couple of magnitude $M=b F$, Eq. (d) may be written in the form $\theta=\lambda C / \partial M$. More generally, for couples M_{i} and rotations θ_{i}, we may write

$$
\begin{equation*}
\theta_{i}=\frac{\partial C}{\partial M_{i}}, \quad i=1,2, \ldots, s \tag{5.3}
\end{equation*}
$$

Hence, Eq. 5.3 determines the angular displacement θ_{i} of the arm of a couple of magnitude M_{i} that acts on an elastic structure. The sense of θ_{i} is the same as that of the couple M_{i}.

Whereas Eqs. 5.2 and 5.3 are restricted to small displacements, they may be applied to structures that possess nonlinear elastic material behavior (Langhaar, 1989). The following example problem indicates the application of Eq. 5.2 for nonlinear elastic material behavior.

EXAMPLE 5.2 Equilibrium of a Nonlinear Elastic Two-Bar System

Let the two bars in Figure E5.1 be made of a nonlinear elastic material whose stress-strain diagram is approximated by the relation $\epsilon=\epsilon_{0} \sinh \left(\sigma / \sigma_{0}\right)$, where ϵ_{0} and σ_{0} are material constants (Figure E5.2). The system is subjected to known loads P and Q. By means of Castigliano's theorem on deflections, determine the small displacement components u and v. Let $P=10.0 \mathrm{kN}, Q=30.0 \mathrm{kN}, \sigma_{0}=70.0 \mathrm{MPa}$, $\epsilon_{0}=0.001, b_{1}=h=400 \mathrm{~mm}, b_{2}=300 \mathrm{~mm}$, and $A_{1}=A_{2}=300 \mathrm{~mm}^{2}$. Show that the values for u and v agree with those obtained by a direct application of equations of equilibrium and the consideration of the geometry of the deformed bars.

FIGURE E5. 2

Solution

Let N_{1} and N_{2} be the tensions in bars $A B$ and $C B$. From the equilibrium conditions for pin B, we find

$$
\begin{align*}
& N_{1}=\frac{L_{1}\left(Q b_{2}+P h\right)}{h\left(b_{1}+b_{2}\right)} \\
& N_{2}=\frac{L_{2}\left(Q b_{2}-P h\right)}{h\left(b_{1}+b_{2}\right)} \tag{a}
\end{align*}
$$

The complementary energy C for the system is equal to the sum of the complementary energies for the two bars. Thus,

$$
\begin{equation*}
C=C_{1}+C_{2}=\int_{0}^{N_{1}} e_{1} d N_{1}+\int_{0}^{N_{2}} e_{2} d N_{2} \tag{b}
\end{equation*}
$$

With $e_{1}=\epsilon_{1} L_{1}$ and $e_{2}=\epsilon_{2} L_{2}$, Eq. (b) becomes

$$
\begin{equation*}
C=\int_{0}^{N_{1}} L_{1} \epsilon_{0} \sinh \frac{N_{1}}{A_{1} \sigma_{0}} d N_{1}+\int_{0}^{N_{2}} L_{2} \epsilon_{0} \sinh \frac{N_{2}}{A_{2} \sigma_{0}} d N_{2} \tag{c}
\end{equation*}
$$

The displacement components u and v are obtained by substitution of Eq. (c) into Eq. 5.2. Thus, we find

$$
\begin{align*}
& u=q_{P}=\frac{\partial C}{\partial P}=L_{1} \epsilon_{0}\left(\sinh \frac{N_{1}}{A_{1} \sigma_{0}}\right) \frac{\partial N_{1}}{\partial P}+L_{2} \epsilon_{0}\left(\sinh \frac{N_{2}}{A_{2} \sigma_{0}}\right) \frac{\partial N_{2}}{\partial P} \\
& v=q_{Q}=\frac{\partial C}{\partial Q}=L_{1} \epsilon_{0}\left(\sinh \frac{N_{1}}{A_{1} \sigma_{0}}\right) \frac{\partial N_{1}}{\partial Q}+L_{2} \epsilon_{0}\left(\sinh \frac{N_{2}}{A_{2} \sigma_{0}}\right) \frac{\partial N_{2}}{\partial Q} \tag{d}
\end{align*}
$$

The partial derivatives of N_{1} and N_{2} with respect to P and Q are obtained by means of Eqs. (a). Taking derivatives and substituting into Eqs. (d), we obtain

$$
\begin{align*}
& u=\frac{L_{1}^{2} \epsilon_{0}}{b_{1}+b_{2}} \sinh \frac{L_{1}\left(Q b_{2}+P h\right)}{A_{1} \sigma_{0} h\left(b_{1}+b_{2}\right)}-\frac{L_{2}^{2} \epsilon_{0}}{b_{1}+b_{2}} \sinh \frac{L_{2}\left(Q b_{1}-P h\right)}{A_{2} \sigma_{0} h\left(b_{1}+b_{2}\right)} \\
& v=\frac{L_{1}^{2} b_{2} \epsilon_{0}}{h\left(b_{1}+b_{2}\right)} \sinh \frac{L_{1}\left(Q b_{2}+P h\right)}{A_{1} \sigma_{0} h\left(b_{1}+b_{2}\right)}+\frac{L_{2}^{2} b_{1} \epsilon_{0}}{h\left(b_{1}+b_{2}\right)} \sinh \frac{L_{2}\left(Q b_{1}-P h\right)}{A_{2} \sigma_{0} h\left(b_{1}+b_{2}\right)} \tag{e}
\end{align*}
$$

Substitution of values for $P, Q, \sigma_{0}, \epsilon_{0}, b_{1}, b_{2}, h, A_{1}$, and A_{2} gives, with Eq. (a) of Example 5.1,

$$
\begin{align*}
u & =0.4709 \mathrm{~mm} \\
v & =0.8119 \mathrm{~mm} \tag{f}
\end{align*}
$$

An alternate method of calculating u and v is as follows: Determine tensions N_{1} and N_{2} in the two bars by Eqs. (a); next, determine elongations e_{1} and e_{2} for the two bars and use these values of e_{1} and e_{2} along with geometric relations to calculate values for u and v. Equations (a) give $N_{1}=26.268 \mathrm{kN}$ and $N_{2}=14.286 \mathrm{kN}$. Elongations e_{1} and e_{2} are given by the relations

$$
\begin{aligned}
& e_{1}=L_{1} \epsilon_{0} \sinh \frac{N_{1}}{A_{1} \sigma_{0}}=565.68(0.001) \sinh \frac{26,268}{300(70)}=0.9071 \mathrm{~mm} \\
& e_{2}=L_{2} \epsilon_{0} \sinh \frac{N_{2}}{A_{2} \sigma_{0}}=500.00(0.001) \sinh \frac{14,286}{300(70)}=0.3670 \mathrm{~mm}
\end{aligned}
$$

With e_{1} and e_{2} known, values of u and v are given by the following geometric relations:

$$
\begin{aligned}
& u=\frac{e_{1} \cos \phi-e_{2} \cos \theta}{\sin \theta \cos \phi+\cos \theta \sin \phi}=0.4709 \mathrm{~mm} \\
& v=\frac{e_{1} \sin \phi+e_{2} \cos \theta}{\sin \theta \cos \phi+\cos \theta \sin \phi}=0.8119 \mathrm{~mm}
\end{aligned}
$$

These values of u and v agree with those of Eqs. (f). Thus, Eq. 5.2 gives the correct values of u and v for this problem of nonlinear material behavior.

5.3 CASTIGLIANO'S THEOREM ON DEFLECTIONS FOR LINEAR LOAD-DEFLECTION RELATIONS

In the remainder of this chapter we limit our consideration mainly to linear elastic material behavior and small displacements. Then, the resulting load-deflection relation for either a member or structure is linear, the strain energy U is equal to the complementary energy C, and the principle of superposition applies. Then, Eqs. 5.2 and 5.3 may be written

$$
\begin{align*}
& q_{i}=\frac{\partial U}{\partial F_{i}}, \quad i=1,2, \ldots, p \tag{5.4}\\
& \theta_{i}=\frac{\partial U}{\partial M_{i}}, \quad i=1,2, \ldots, s \tag{5.5}
\end{align*}
$$

where $U=U\left(F_{1}, F_{2},{ }^{\circ}, F_{p}, M_{1}, M_{2},{ }^{\circ}, M_{s}\right)$.
The strain energy U is

$$
\begin{equation*}
U=\int U_{0} d V \tag{5.6}
\end{equation*}
$$

where U_{0} is the strain-energy density. In the remainder of this chapter we restrict ourselves to linear elastic, isotropic, homogeneous materials for which the strain-energy density is (see Eq. 3.33)

$$
\begin{align*}
U_{0}= & \frac{1}{2 E}\left(\sigma_{x x}^{2}+\sigma_{y y}^{2}+\sigma_{z z}^{2}\right)-\frac{v}{E}\left(\sigma_{x x} \sigma_{y y}+\sigma_{y y} \sigma_{z z}+\sigma_{z z} \sigma_{x x}\right) \\
& +\frac{1}{2 G}\left(\sigma_{y z}^{2}+\sigma_{z x}^{2}+\sigma_{x y}^{2}\right) \tag{5.7}
\end{align*}
$$

With load-stress formulas derived for the members of the structure, U_{0} may be expressed in terms of the loads that act on the structure. Then, Eq. 5.6 gives U as a function of the loads. Equations 5.4 and 5.5 can then be used to obtain displacements at the points of application of the concentrated forces or the rotations in the direction of the concentrated moments. Three types of loads are considered in this chapter for the various members of a structure: 1 . axial loading, 2. bending of beams, and 3. torsion. In practice, it is convenient to obtain the strain energy for each type of load acting alone and then add together these strain energies to obtain the total strain energy U, instead of using load-stress formulas and Eqs. 5.6 and 5.7 to obtain U.

5.3.1 Strain Energy $\boldsymbol{U}_{\boldsymbol{N}}$ for Axial Loading

The equation for the total strain energy U_{N} resulting from axial loading is derived for the tension members shown in Figures 5.4a and 5.4d. In general, the cross-sectional area A of the tension member may vary slowly with axial coordinate z. The line of action of the loads (the z axis) passes through the centroid of every cross section of the tension member. Consider two sections $B C$ and $D F$ of the tension member in Figure $5.4 a$ at distance $d z$ apart. After the loads are applied, these sections are displaced to $B^{*} C^{*}$ and $D^{*} F^{*}$ (shown by the enlarged free-body diagram in Figure $5.4 b$) and the original length $d z$ has elongated an amount $d e_{z}$. For linear elastic material behavior, $d e_{z}$ varies linearly with N as indicated in Figure 5.4c. The shaded area below the straight line is equal to the strain energy $d U_{N}$ for the segment $d z$ of the tension member. The total strain energy U_{N} for the tension member becomes

$$
U_{N}=\int d U_{N}=\int \frac{1}{2} N d e_{z}
$$

FIGURE 5.4 Strain energy resulting from axial loading of member.

Noting that $d e_{z}=\epsilon_{z z} d z$ and assuming that the cross-sectional area varies slowly, we have $\epsilon_{z z}=\sigma_{z z} / E$ and $\sigma_{z z}=N / A$, where A is the cross-sectional area of the member at section z. Then, we write U_{N} in the form

$$
\begin{equation*}
U_{N}=\int_{0}^{L} \frac{N^{2}}{2 E A} d z \tag{5.8}
\end{equation*}
$$

At abrupt changes in material properties, load, and cross section, the values of E, N, and A change abruptly (see Figure $5.4 d$). Then, we must account approximately for these changes by writing U_{N} in the form

$$
\begin{equation*}
U_{N}=\int_{0}^{L_{1}} \frac{N_{1}^{2}}{2 E_{1} A_{1}} d z+\int_{L_{1}}^{L_{2}} \frac{N_{2}^{2}}{2 E_{2} A_{2}} d z+\int_{L_{2}}^{L} \frac{N_{3}^{2}}{2 E_{3} A_{3}} d z \tag{5.9}
\end{equation*}
$$

where an abrupt change in load occurs at L_{1} and an abrupt change in cross-sectional area occurs at L_{2}. The subscripts 1,2,3 refer to properties in parts 1,2,3 of the member (Figure 5.4d).

Strain Energy for Axially Loaded Springs

Consider an elastic spring subjected to an axial force Q (Figure 5.5a). The load-deflection curve for the spring is not necessarily linear (Figure 5.5b). The external force Q is applied slowly so that it remains in equilibrium with the internal tension force F in the spring. The potential energy U of the axially loaded spring that undergoes an axial elongation δ is defined as the work that Q performs under the elongation δ. Thus, by Figure $5.5 b$,

$$
\begin{equation*}
U=\int d U=\int_{0}^{\delta} Q d x \tag{5.10}
\end{equation*}
$$

Similarly, by Figure $5.5 b$, the complementary strain energy C of the spring is

$$
\begin{equation*}
C=\int d C=\int_{0}^{P} x d Q \tag{5.11}
\end{equation*}
$$

For a linear spring (Figure $5.5 c$), $C=U$. Hence, we may write

$$
U=C=\int_{0}^{\delta} Q d x
$$

FIGURE 5.5 (a) Axially loaded spring. (b) Nonlinear load-elongation response. (c) Linear loadelongation response.

Also, for a linear spring, the internal tension force is $F=k x$, where k is a spring constant $[\mathrm{F} / \mathrm{L}]$ and x is the elongation of the spring from its initially unstretched length L_{0}. Since for equilibrium, $F=Q$,

$$
\begin{equation*}
U=C=\int_{0}^{\delta} F d x=\int_{0}^{\delta} k x d x=\frac{1}{2} k \delta^{2} \tag{5.12}
\end{equation*}
$$

The magnitude of the energy that a spring can absorb is a function of its elongation $\boldsymbol{\delta}$, and it is important in certain mechanical designs. For example, springs are commonly used to absorb energy in vehicles (automobiles and aircraft) when they are subjected to impact loads (rough roads and landings).

5.3.2 Strain Energies $\boldsymbol{U}_{\boldsymbol{M}}$ and $\boldsymbol{U}_{\boldsymbol{s}}$ for Beams

Consider a beam of uniform (or slowly varying) cross section, as in Figure 5.6a. We take the (x, y, z) axes with origin at the centroid of the cross section and with the z axis along the axis of the beam, the y axis down, and the x axis normal to the plane of the paper. The (x, y) axes are assumed to be principal axes for each cross section of the beam (see Appen$\operatorname{dix} B$). The loads P, Q, and R are assumed to lie in the (y, z) plane. The flexure formula

$$
\sigma_{z z}=\frac{M_{x} y}{I_{x}}
$$

is assumed to hold, where M_{x} is the internal bending moment with respect to the principal x axis, I_{x} is the moment of inertia of the cross section at z about the x axis, and y is measured from the (x, z) plane. Consider two sections $B C$ and $D F$ of the unloaded beam at distance $d z$ apart. After the loads are applied to the beam, plane sections $B C$ and $D F$ are displaced to $B^{*} C^{*}$ and $D^{*} F^{*}$ and are assumed to remain plane. An enlarged free-body diagram of the deformed beam segment is shown in Figure 5.6b. M_{x} causes plane $D^{*} F^{*}$ to rotate through angle $d \phi$ with respect to $B^{*} C^{*}$. For linear elastic material behavior, $d \phi$ varies linearly with M_{x} as indicated in Figure $5.6 c$. The shaded area below the inclined straight line is equal to the strain energy $d U_{M}$ resulting from bending of the beam segment $d z$. An additional strain energy $d U_{S}$ caused by the shear V_{y} is considered later. The strain energy U_{M} for the beam caused by M_{x} becomes

$$
U_{M}=\int d U_{M}=\int \frac{1}{2} M_{x} d \phi
$$

Noting that $d \phi=d e_{z} / y$ and $d e_{z}=\epsilon_{z z} d z$, and assuming that $\epsilon_{z z}=\sigma_{z z} / E$ and $\sigma_{z z}=M_{x} y / I_{x}$, we may write U_{M} in the form

$$
\begin{equation*}
U_{M}=\int \frac{M_{x}^{2}}{2 E I_{x}} d z \tag{5.13}
\end{equation*}
$$

where in general M_{x} is a function of z. Equation 5.13 represents the strain energy resulting from bending about the x axis. A similar relation is valid for bending about the y axis for loads lying in the (x, z) plane. For abrupt changes in material E, moment M_{x}, or moment of inertia I_{x}, the value of U_{M} may be computed following the same procedure as for U_{N} (Eq. 5.9).

Equation 5.13 is exact for pure bending but is only approximate for shear loading as indicated in Figure 5.6a. However, more exact solutions and experimental data indicate that Eq. 5.13 is fairly accurate, except for relatively short beams.

An exact expression for the strain energy U_{S} resulting from shear loading of a beam is difficult to obtain. Consequently, an approximate expression for U_{S} is often used. When corrected by an appropriate coefficient, the use of this approximate expression often leads to fairly reliable results. The correction coefficients are discussed later.

FIGURE 5.6 Strain energy resulting from bending and shear.

Because of the shear V_{y} (Figure $5.6 b$), shear stresses $\sigma_{z y}$ are developed in each cross section; the magnitude of $\sigma_{z y}$ is zero at both the top and bottom of the beam since the beam is not subjected to shear loads on the top or bottom surfaces. We define an average value of $\sigma_{z y}$ as $\tau=V_{y} / A$. We assume that this average shear stress acts over the entire beam cross section (Figure $5.6 d$) and, for convenience, assume that the beam cross section is rectangular with thickness b. Because of the shear, the displacement of face $D^{*} F^{*}$ with respect to face $B^{*} C^{*}$ is $d e_{y}$. For linear elastic material behavior, $d e_{y}$ varies linearly with V_{y}, as indicated in Figure 5.6e. The shaded area below the inclined straight line is equal to the strain energy $d U_{S}^{\prime}$ for the beam segment $d z$. A correction coefficient k is now defined such that the exact expression for the shear strain energy $d U_{S}$ of the element is equal to $k d U_{S}^{\prime}$. Then, the shear strain energy U_{S} for the beam resulting from shear V_{y} is

$$
U_{S}=\int k d U_{S}^{\prime}=\int \frac{k}{2} V_{y} d e_{y}
$$

Noting that $d e_{y}=\gamma d z$ and assuming that $\gamma=\tau / G$ and $\tau=V_{y} / A$, we may write U_{S} in the form

$$
\begin{equation*}
U_{S}=\int \frac{k V_{y}^{2}}{2 G A} d z \tag{5.14}
\end{equation*}
$$

Equation 5.14 represents the strain energy for shear loading of a beam. The value of V_{y} is generally a function of z. Also, the cross-sectional area A may vary slowly with z. For abrupt changes in material E, shear V_{y}, or cross-sectional area A, the value of U_{S} may be computed following the same procedure as for U_{N} (Eq. 5.9).

An exact expression of U_{S} may be obtained, provided the exact shear stress distribution $\sigma_{z y}$ is known. Then substitution of $\sigma_{z y}$ into Eq. 5.7 to obtain U_{0} (with the other stress components being zero) and then substitution into Eq. 5.6 yields U_{S}. However, the exact distribution of $\sigma_{z y}$ is often difficult to obtain, and approximate distributions are used. For example, consider a segment $d y$ of thickness b of a beam cross section. In the engineering theory of beams, the stress component $\sigma_{z y}$ is assumed to be uniform over thickness b. With this assumption (see Section 1.1)

$$
\sigma_{z y}=\frac{V_{y} Q}{I_{x} b}
$$

TABLE 5.1 Correction Coefficients for Strain Energy Due to Shear

Beam cross section	\boldsymbol{k}
Thin rectangle $^{\mathrm{a}}$	1.20
Solid circular $^{\mathrm{b}}$	1.33
Thin-wall circular $^{\mathrm{b}}$	2.00
l-section, channel, box-section $^{\mathrm{c}}$	1.00

${ }^{\text {a Exact value. }}$
${ }^{\text {b }}$ Calculated as the ratio of the shear stress at the neutral surface to the average shear stress.
${ }^{\text {'The }}$ The area \boldsymbol{A} for the i-section, channel, or box-section is the area of the web $h b$, where h is the section depth and b the web thickness. The load is applied perpendicular to the axis of the beam and in the plane of the web.
where Q is the first moment about the x axis of the area above the line of length b with ordinate y. Generally, $\sigma_{z y}$ is not uniform over thickness b. Nevertheless, if for a beam of rectangular cross section, one assumes that $\sigma_{z y}$ is uniform over b, it may be shown that $k=1.20$.

Exact values of k are not generally available. Fortunately, in practical problems, the shear strain energy U_{S} is often small compared to U_{M}. Hence, for practical problems, the need for exact values of U_{S} is not critical. Consequently, as an expedient approximation, the correction coefficient k in Eq. 5.14 may be obtained as the ratio of the shear stress at the neutral surface of the beam calculated using $V_{y} Q / I_{x} b$ to the average shear stress V_{y} / A. For example, by this procedure, the magnitude of k for the rectangular cross section is

$$
\begin{equation*}
k=\frac{V_{y} Q}{I_{x} b} \frac{A}{V_{y}}=\frac{Q b h}{I_{x} b}=\frac{(b h / 2)(h / 4) h}{\frac{1}{12} b h^{3}}=1.50 \tag{5.15}
\end{equation*}
$$

This value is larger and hence more conservative than the more exact value 1.20 . Nevertheless, since the more precise value is known, we recommend that $k=1.20$ be used for rectangular cross sections. Values of k are listed in Table 5.1 for several beam cross sections.

5.3.3 Strain Energy $\boldsymbol{U}_{\boldsymbol{T}}$ for Torsion

The strain energy U_{T} for a torsion member with circular cross section (Figure 5.7a) may be derived as follows: Let the z axis lie along the centroidal axis of the torsion member. Before torsional loads T_{1} and T_{2} are applied, sections $B C$ and $D F$ are a distance $d z$ apart. After the torsional loads are applied, these sections become sections $B^{*} C^{*}$ and $D^{*} F^{*}$, with section

FIGURE 5.7 Strain energy resulting from torsion.
$D^{*} F^{*}$ rotated relative to section $B^{*} C^{*}$ through the angle $d \beta$, as shown in the enlarged freebody diagram of the element of length $d z$ (Figure 5.7b). For linear elastic material behavior, $d \beta$ varies linearly with T (Figure 5.7c). The shaded area below the inclined straight line is equal to the torsional strain energy $d U_{T}$ for the segment $d z$ of the torsion member. Hence, the total torsional strain energy U_{T} for the torsional member becomes

$$
U_{T}=\int d U_{T}=\int \frac{1}{2} T d \beta
$$

Noting that $b d \beta=\gamma d z$ and assuming that $\gamma=\tau / G$ and $\tau=T b / J$ (where b is the radius and J is the polar moment of inertia of the cross section), we may write U_{T} in the form

$$
\begin{equation*}
U_{T}=\int \frac{T^{2}}{2 G J} d z \tag{5.16}
\end{equation*}
$$

Equation 5.16 represents the strain energy for a torsion member with circular cross section. The unit angle of twist θ for a torsion member of circular cross section is given by $\theta=T / G J$. Torsion of noncircular cross sections is treated in Chapter 6. Equation 5.16 is valid for other cross sections if the unit angle of twist θ for a given cross section replaces $T / G J$ in Eq. 5.16. For abrupt changes in material E, torsional load T, or polar moment of inertia J, the value of U_{T} may be computed following the same procedure as for U_{N} (Eq. 5.9).

EXAMPLE 5.3 Linear SpringWeight System

Consider weights W_{1} and W_{2} supported by the linear springs shown in Figure E5.3. The spring constants are k_{1} and k_{2}. Determine the displacements q_{1} and q_{2} of the weights as functions of W_{1}, W_{2}, k_{1}, and k_{2}. Assume that the weights are applied slowly so that the system is always in equilibrium as the springs are stretched from their initially unstretched lengths.

FIGURE E5.3

Solution
Under the displacements q_{1} and q_{2}, spring 1 undergoes an elongation q_{1} and spring 2 undergoes an elongation $q_{2}-q_{1}$. Hence, by Eq. 5.12 , the potential energy stored in the springs is

$$
\begin{equation*}
U=\frac{1}{2} k_{1} q_{1}^{2}+\frac{1}{2} k_{2}\left(q_{2}-q_{1}\right)^{2} \tag{a}
\end{equation*}
$$

The internal tension forces in springs 1 and 2 are

$$
\begin{equation*}
F_{1}=k_{1} q_{1}, \quad F_{2}=k_{2}\left(q_{2}-q_{1}\right) \tag{b}
\end{equation*}
$$

But by equilibrium,

$$
\begin{equation*}
F_{1}=W_{1}+W_{2}, \quad F_{2}=W_{2} \tag{c}
\end{equation*}
$$

Then, by Eqs. (a)-(c), the potential energy in terms of W_{1}, W_{2}, k_{1}, and k_{2} is

$$
\begin{equation*}
U=\frac{1}{2} \frac{\left(W_{1}+W_{2}\right)^{2}}{k_{1}}+\frac{1}{2} \frac{W_{2}^{2}}{k_{2}} \tag{d}
\end{equation*}
$$

By Eqs. 5.4 and (d), we obtain

$$
\begin{align*}
& q_{1}=\frac{\partial U}{\partial W_{1}}=\frac{W_{1}+W_{2}}{k_{1}} \\
& q_{2}=\frac{\partial U}{\partial W_{2}}=\frac{W_{1}+W_{2}}{k_{1}}+\frac{W_{2}}{k_{2}} \tag{e}
\end{align*}
$$

Equation (e) agrees with a direct solution of Eqs. (b) and (c), without consideration of potential energy.

EXAMPLE 5.4 Nonlinear Spring System

Assume that the force-elongation relation for the springs of Example 5.3 is

$$
\begin{equation*}
F=k x^{2} \tag{a}
\end{equation*}
$$

Determine the displacements q_{1} and q_{2} of the weights as functions of W_{1}, W_{2}, k_{1}, and k_{2}.

Solution

By Eq. (a),

$$
\begin{equation*}
x=\left(\frac{F}{k}\right)^{1 / 2} \tag{b}
\end{equation*}
$$

Hence, by Eqs. 5.11 and (b), the complementary strain energy of the system is

$$
C=\int_{0}^{F_{1}}\left(\frac{F}{k_{1}}\right)^{1 / 2} d F+\int_{0}^{F_{2}}\left(\frac{F}{k_{2}}\right)^{1 / 2} d F
$$

or

$$
\begin{equation*}
C=\frac{2}{3}\left(\frac{F_{1}^{3 / 2}}{k_{1}^{1 / 2}}+\frac{F_{2}^{3 / 2}}{k_{2}^{1 / 2}}\right) \tag{c}
\end{equation*}
$$

By equilibrium, as in Example 5.3,

$$
\begin{equation*}
F_{1}=W_{1}+W_{2}, \quad F_{2}=W_{2} \tag{d}
\end{equation*}
$$

So, Eqs. (c) and (d) yield

$$
\begin{equation*}
C=\frac{2}{3}\left(\frac{\left(W_{1}+W_{2}\right)^{3 / 2}}{k_{1}^{1 / 2}}+\frac{W_{2}^{3 / 2}}{k_{2}^{1 / 2}}\right) \tag{e}
\end{equation*}
$$

Then, by Eqs. 5.2 and (e), we obtain

$$
\begin{aligned}
& q_{1}=\frac{\partial C}{\partial W_{1}}=\left(\frac{W_{1}+W_{2}}{k_{1}}\right)^{1 / 2} \\
& q_{2}=\frac{\partial C}{\partial W_{2}}=\left(\frac{W_{1}+W_{2}}{k_{1}}\right)^{1 / 2}+\left(\frac{W_{2}}{k_{2}}\right)^{1 / 2}
\end{aligned}
$$

5.4 DEFLECTIONS OF STATICALLY DETERMINATE STRUCTURES

In the analysis of many engineering structures, the equations of static equilibrium are both necessary and sufficient to solve for unknown reactions and for internal actions in the members of the structure. For example, the simple structure shown in Figure E5.1 is such a structure; the equations of static equilibrium are sufficient to solve for the tensions N_{1} and N_{2} in members $A B$ and $C B$, respectively. Structures for which the equations of static equilibrium are sufficient to determine the unknown tensions, shears, etc., uniquely are said to be statically determinate structures. Implied in the expression "statically determinate" is the condition that the deflections caused by the loads are so small that the geometry of the initially unloaded structure remains essentially unchanged and the angles between members are essentially constant. If these conditions were not true, the internal tensions, etc., could not be determined without including the effects of the deformation and, hence, they could not be determined solely from the equations of equilibrium.

The truss shown in Figure 5.8 is a statically determinate truss. A physical characteristic of a statically determinate structure is that every member is essential for the proper functioning of the structure under the various loads to which it is subjected. For example, if member $A C$ were to be removed from the truss of Figure 5.8 , the truss would collapse.

Often, additional members are added to structures to stiffen the structure (reduce deflections), to strengthen the structure (increase its load-carrying capacity), or to provide alternate load paths (in the event of failure of one or more members). For example, for such purposes an additional diagonal member $B D$ may be added to the truss of Figure 5.8; see Figure 5.9. Since the equations of static equilibrium are just sufficient for the analysis of the truss of Figure 5.8, they are not adequate for the analysis of the truss of Figure 5.9. Accordingly, the truss of Figure 5.9 is said to be a statically indeterminate structure. The analysis of statically indeterminate structures requires additional information (additional equations) beyond that obtained from the equations of static equilibrium.

FIGURE 5.8 Statically determinate truss.

FIGURE 5.9 Statically indeterminate truss.

In this section, the analysis of statically determinate structures is discussed. The analysis of statically indeterminate structures is presented in Section 5.5.

The strain energy U for a structure is equal to the sum of the strain energies of its members. The loading for the j th member of the structure is assumed to be such that the strain energy U_{j} for that member is

$$
U_{j}=U_{N j}+U_{M j}+U_{S j}+U_{T j}
$$

where $U_{N j}, U_{M j}, U_{S j}$, and $U_{T j}$ are given by Eqs. 5.8, $5.13,5.14$, and 5.16 , respectively. In the remainder of this chapter the limitations placed on the member cross section in the derivation of each of the components of the strain energy are assumed to apply. For instance, each beam is assumed to undergo bending about a principal axis of the beam cross section (see Appendix B and Chapter 7); Eqs. 5.13 and 5.14 are valid only for bending about a principal axis. For simplicity, we consider bending about the x axis (taken to be a principal axis) and let $M_{x}=M$ and $V_{y}=V$.

With the total strain energy U of the structure known, the deflection q_{i} of the structure at the location of a concentrated force F_{i} in the direction of F_{i} is (see Eq. 5.4)

$$
\begin{align*}
q_{i}= & \frac{\partial U}{\partial F_{i}} \\
=\sum_{j=1}^{m}(& \left(\frac{N_{j}}{E_{j} A_{j}} \frac{\partial N_{j}}{\partial F_{i}} d z+\int \frac{k_{j} V_{j}}{G_{j} A_{j}} \frac{\partial V_{j}}{\partial F_{i}} d z\right. \tag{5.17}\\
& \left.+\int \frac{M_{j}}{E_{j} I_{j}} \frac{\partial M_{j}}{\partial F_{i}} d z+\int \frac{T_{j}}{G_{j} J_{j}} \frac{\partial T_{j}}{\partial F_{i}} d z\right)
\end{align*}
$$

and the angle (slope) change θ_{i} of the structure at the location of a concentrated moment M_{i} in the direction of M_{i} is (see Eq. 5.5)

$$
\begin{align*}
\theta_{i}= & \frac{\partial U}{\partial M_{i}} \\
= & \sum_{j=1}^{m}\left(\int \frac{N_{j}}{E_{j} A_{j}} \frac{\partial N_{j}}{\partial M_{i}} d z+\int \frac{k_{j} V_{j}}{G_{j} A_{j}} \frac{\partial V_{j}}{\partial M_{i}} d z\right. \tag{5.18}\\
& \left.+\int \frac{M_{j}}{E_{j} I_{j}} \frac{\partial M_{j}}{\partial M_{i}} d z+\int \frac{T_{j}}{G_{j} J_{j}} \frac{\partial T_{j}}{\partial M_{i}} d z\right)
\end{align*}
$$

where m is the number of members in the structure. Use of Castigliano's theorem on deflections, as expressed in Eqs. 5.17 and 5.18, to determine deflections or rotations at the location of a concentrated force or moment is outlined in the following procedure:

1. Write an expression for each of the internal actions (axial force, shear, moment, and torque) in each member of the structure in terms of the applied external loads.
2. To determine the deflection q_{i} of the structure at the location of a concentrated force F_{i} and in the directed sense of F_{i}, differentiate each of the internal action expressions with respect to F_{i}. Similarly, to determine the rotation θ_{i} of the structure at the location of a concentrated moment M_{i} and in the directed sense of M_{i}, differentiate each of the internal action expressions with respect to M_{i}.
3. Substitute the expressions for internal actions obtained in Step 1 and the derivatives obtained in Step 2 into Eq. 5.17 or 5.18 and perform the integration. The result is a relationship between the deflection q_{i} (or rotation θ_{i}) and the externally applied loads.
4. Substitute the magnitudes of the external loads into the result obtained in Step 3 to obtain a numerical value for the displacement q_{i} or rotation θ_{i}.

5.4.1 Curved Beams Treated as Straight Beams

The strain energy resulting from bending (see Eq. 5.13) was derived by assuming that the beam is straight. The magnitude of U_{M} for curved beams is derived in Chapter 9 , where it is shown that the error in using Eq. 5.13 to determine U_{M} is negligible as long as the radius of curvature of the beam is more than twice its depth. Consider the curved beam in Figure 5.10 whose strain energy is the sum of U_{N}, U_{S}, and U_{M}, each of which is caused by the same load P. If the radius of curvature R of the curved beam is large compared to the beam depth, the magnitudes of U_{N} and U_{S} will be small compared to U_{M} and can be neglected. We assume that U_{N} and U_{S} can be neglected when the ratio of length to depth is greater than 10 . The resulting error is often less than 1% and will seldom exceed 5\%. Numerical results are obtained in Examples 5.9 and 5.10.

FIGURE 5.10 Curved cantilever beam.

EXAMPLE 5.5
End Load on a Cantilever Beam

Determine the deflection under load P of the cantilever beam shown in Figure E5.5. Assume that the beam length L is more than five times the beam depth h.

FIGURE E5.5 End-loaded cantilever beam.

Solution

Since $L>5 h$, the strain energy U_{S} is small and will be neglected. Therefore, the total strain energy is (Eq. 5.13)

$$
\begin{equation*}
U=U_{M}=\int_{0}^{L} \frac{M_{x}^{2}}{2 E I_{x}} d z \tag{a}
\end{equation*}
$$

By Castigliano's theorem, the deflection q_{P} is (Eq. 5.2)

$$
\begin{equation*}
q_{P}=\frac{\partial U}{\partial P}=\int_{0}^{L} \frac{M_{x}}{E I_{x}} \frac{\partial M_{x}}{\partial P} d z \tag{b}
\end{equation*}
$$

By Figure E5.5, $M_{x}=P z$. Therefore, $\partial M_{x} / \partial P=z$, and by Eq. (b), we find

$$
\begin{equation*}
q_{P}=\int_{0}^{L} \frac{P z}{E I_{x}} d z=\frac{P L^{3}}{3 E I_{x}} \tag{c}
\end{equation*}
$$

This result agrees with elementary beam theory.

EXAMPLE 5.6
Cantilever Beam Loaded in Its Plane

The cantilever beam in Figure E5.6 has a rectangular cross section and is subjected to equal loads P at the free end and at the center as shown.

FIGURE E5.6
(a) Determine the deflection of the free end of the beam.
(b) What is the error in neglecting the strain energy resulting from shear if the beam length L is five times the beam depth h ? Assume that the beam is made of steel ($E=200 \mathrm{GPa}$ and $G=77.5 \mathrm{GPa}$).

Solution

(a) To determine the dependencies of the shear V and moment M on the end load P, it is necessary to distinguish between the loads at A and B. Let the load at B be designated by Q. The moment and shear functions are continuous from A to B and from B to C. From A to B, we have

$$
\begin{array}{ll}
V=P, \quad \therefore \frac{\partial V}{\partial P}=1 \\
M=P z, \quad \therefore \frac{\partial M}{\partial P}=z
\end{array}
$$

From B to C, we have

$$
\begin{aligned}
& V=P+Q, \quad \therefore \frac{\partial V}{\partial P}=1 \\
& M=P\left(\bar{z}+\frac{L}{2}\right)+Q \bar{z}, \quad \therefore \frac{\partial M}{\partial P}=\bar{z}+\frac{L}{2}
\end{aligned}
$$

where we have chosen point B as the origin of coordinate \bar{z} for the length from B to C. Equation 5.17 gives (with $Q=P$ and $k=1.2$)

$$
\begin{align*}
q_{p} & =\int_{0}^{L / 2} \frac{1.2 P}{G A}(1) d z+\int_{0}^{L / 2} \frac{P z}{E I}(z) d z+\int_{0}^{L / 2} \frac{2.4 P}{G A}(1) d \bar{z} \\
& +\int_{0}^{L / 2} \frac{P(2 \bar{z}+L / 2)}{E I}\left(\bar{z}+\frac{L}{2}\right) d \bar{z}=\frac{1.8 P L}{G A}+\frac{7 P L^{3}}{16 E I} \tag{a}
\end{align*}
$$

(b) Since the beam has a rectangular section, $A=b h$ and $I=b h^{3} / 12$. Equation (a) can be rewritten as follows:

$$
\begin{aligned}
\frac{E b q_{P}}{P} & =\frac{1.8 L E}{G h}+\frac{7(12) L^{3}}{16 h^{3}} \\
& =\frac{1.8(5)(200)}{77.5}+\frac{7(12)\left(5^{3}\right)}{16} \\
& =23.23+656.25 \\
& =679.48
\end{aligned}
$$

Therefore, the error in neglecting shear term is $\frac{23.23(100)}{679.48}=3.42 \%$
Alternatively, one could have used the approximate value $k=1.50$ (Eq. 5.15). Then the estimate of shear contribution would have been increased by the ratio $1.50 / 1.20=1.25$. Overall the shear contribution would still remain small.

EXAMPLE 5.7 A Shaft-Beam Mechanism

A shaft $A B$ is attached to the beam CDFH; see Figure E5.7. A torque of $2.00 \mathrm{kN} \cdot \mathrm{m}$ is applied to the end B of the shaft. Determine the rotation of section B. The shaft and beam are made of an aluminum alloy for which $E=72.0 \mathrm{GPa}$ and $G=27.0 \mathrm{GPa}$. Assume that the hub $D F$ is rigid.

FIGURE E5.7 Shaft-beam mechanism.

Solution

Since the beam is slender, the strain energy resulting from shear can be neglected. Hence, the total strain energy of the mechanism is

$$
\begin{equation*}
U=U_{M}+U_{T}=2 \int_{0}^{400} \frac{M_{x}^{2}}{2 E I_{x}} d z+\int_{0}^{800} \frac{T^{2}}{2 G J} d z \tag{a}
\end{equation*}
$$

The pin reactions at C and H have the same magnitude but opposite sense. Therefore, moment equilibrium yields the result

$$
\begin{equation*}
H=C=T / 1000 \tag{b}
\end{equation*}
$$

By Castigliano's theorem, the angular rotation at B is

$$
\begin{equation*}
\theta_{B}=\frac{\partial U}{\partial T}=2 \int_{0}^{400} \frac{M_{x}}{E I_{x}} \frac{\partial M_{x}}{\partial T} d z_{1}+\int_{0}^{800} \frac{T}{G J} d z_{2} \tag{c}
\end{equation*}
$$

By Figure E5.7 and Eq. (b), we have

$$
\begin{equation*}
T=2,000,000 \mathrm{~N} \cdot \mathrm{~mm}, \quad M_{x}=C z_{1}=0.001 T z_{1}[\mathrm{~N} \cdot \mathrm{~mm}] \tag{d}
\end{equation*}
$$

With $I_{x}=(30)(40)^{3} / 12=160,000 \mathrm{~mm}^{4}$ and $J=\pi(60)^{4} / 32=1.272 \times 10^{6} \mathrm{~mm}^{4}$, Eqs. (c) and (d) yield $\theta_{B}=0.054 \mathrm{rad}$.

EXAMPLE 5.8 Uniformly Loaded Cantilever Beam

The cantilever beam in Figure E5.8a is subjected to a uniformly distributed load w. Determine the deflection of the free end. Neglect the shear strain energy U_{S}.

FIGURE E5.8 Uniformly loaded cantilever beam.

Since there is no force acting at the free end, we introduce the fictitious force P (Figure E5.8b). (See the discussion in Section 5.4.2.) Hence, the deflection q_{P} at the free end is given by (see Eq. 5.2)

$$
\begin{equation*}
q_{P}=\left.\int_{0}^{L} \frac{M_{x}}{E I_{x}} \frac{\partial M_{x}}{\partial P}\right|_{P=0} d z \tag{a}
\end{equation*}
$$

The bending moment M_{x} caused by P and w is

$$
\begin{equation*}
M_{x}=P z+\frac{1}{2} w z^{2} \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial M_{x}}{\partial P}=z \tag{c}
\end{equation*}
$$

Substitution of Eqs. (b) and (c) into Eq. (a) yields

$$
\begin{equation*}
q_{P}=\left.\frac{1}{E I_{x}} \int_{0}^{L}\left(P z+\frac{1}{2} w z^{2}\right)\right|_{P=0} ^{z d z=\frac{w L^{4}}{8 E I_{x}}, ~} \tag{d}
\end{equation*}
$$

This result agrees with elementary beam theory.

EXAMPLE 5.9 Curved Beam Loaded in Its Plane

The curved beam in Figure E5.9 has a $30-\mathrm{mm}$ square cross section and radius of curvature $R=65 \mathrm{~mm}$. The beam is made of a steel for which $E=200 \mathrm{GPa}$ and $v=0.29$.
(a) If $P=6.00 \mathrm{kN}$, determine the deflection of the free end of the curved beam in the direction of P. (b) What is the error in the deflection if U_{N} and U_{S} are neglected?

FIGURE E5. 9

Solution The shear modulus for the steel is $G=E /[2(1+v)]=77.5 \mathrm{GPa}$.
(a) It is convenient to use polar coordinates. For a cross section of the curved beam located at angle θ from the section on which P is applied (Figure E5.9),

$$
\begin{array}{ll}
N=P \cos \theta, & \frac{\partial N}{\partial P}=\cos \theta \\
V=P \sin \theta, & \frac{\partial V}{\partial P}=\sin \theta \tag{a}\\
M=P R(1-\cos \theta), & \frac{\partial M}{\partial P}=R(1-\cos \theta)
\end{array}
$$

Substitution into Eq. 5.17 gives

$$
\begin{align*}
q_{P}= & \int_{0}^{3 \pi / 2} \frac{P \cos \theta}{E A}(\cos \theta) R d \theta+\int_{0}^{3 \pi / 2} \frac{k P \sin \theta}{G A}(\sin \theta) R d \theta \\
& +\int_{0}^{3 \pi / 2} \frac{P R(1-\cos \theta)}{E I} R(1-\cos \theta) R d \theta \tag{b}
\end{align*}
$$

Using the trigonometric identities $\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta$ and $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$, we find that

$$
\begin{aligned}
q_{P}= & \frac{P R}{E A} \int_{0}^{3 \pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta+\frac{1.2 P R}{G A} \int_{0}^{3 \pi / 2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta \\
& +\frac{P R^{3}}{E I} \int_{0}^{3 \pi / 2}\left(1-2 \cos \theta+\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta \\
q_{P}= & \frac{3 \pi P R}{4 E A}+\frac{1.2(3 \pi) P R}{4 G A}+\left(\frac{9 \pi}{4}+2\right)\left(\frac{P R^{3}}{E I}\right) \\
= & \frac{3 \pi(65)(6000)}{4\left(200 \times 10^{3}\right)(30)^{2}}+\frac{1.2(3 \pi)(65)(6000)}{4(77,500)(30)^{2}}+\left(\frac{9 \pi}{4}+2\right) \frac{(65)^{3}(6000)(12)}{\left(200 \times 10^{3}\right)(30)^{4}} \\
= & 0.0051+0.0158+1.1069=1.1278
\end{aligned}
$$

(b) If U_{N} and U_{S} are neglected,

$$
q_{P}=1.1069 \mathrm{~mm}
$$

and the percentage error in the deflection calculation is

$$
\text { error }=\frac{(1.1278-1.1069) 100}{1.1278}=1.85 \%
$$

This error is small enough to be neglected for most engineering applications. The ratio of length to depth for this beam is $3 \pi(65) /[2(30)]=10.2$ (see Section 5.4.1).

EXAMPLE 5.10
 Semicircular Cantilever Beam

The semicircular cantilever beam in Figure E5.10 has a radius of curvature R and a circular cross section of diameter d. It is subjected to loads of magnitude P at points B and C.

FIGURE E5.10
(a) Determine the vertical deflection at C in terms of P, modulus of elasticity E, shear modulus G, radius of curvature R, cross-sectional area A, and moment of inertia of the cross section I.
(b) Let $P=150 \mathrm{~N}, R=200 \mathrm{~mm}, d=20.0 \mathrm{~mm}, E=200 \mathrm{GPa}$, and $G=77.5 \mathrm{GPa}$. Determine the effect of neglecting the strain energy U_{S} due to shear.

Solution

(a) Since we wish to determine the vertical deflection at C, the contribution to the total strain energy of the load at C must be distinguished from the contribution of the load at B. Therefore, as in Example 5.6, we denote the load P at B by Q ($=P$ in magnitude) (Figure E5.10). For section $B C$, we have

$$
\begin{array}{ll}
N=P \cos \phi, & \frac{\partial N}{\partial P}=\cos \phi \\
V=P \sin \phi, & \frac{\partial V}{\partial P}=\sin \phi \tag{a}\\
M=P R(1-\cos \phi), & \frac{\partial M}{\partial P}=R(1-\cos \phi)
\end{array}
$$

For section $A B$, we have

$$
\begin{array}{ll}
N=(P+Q) \sin \theta, & \frac{\partial N}{\partial P}=\sin \theta \\
V=(P+Q) \cos \theta, & \frac{\partial V}{\partial P}=\cos \theta \tag{b}\\
M=P R(1+\sin \theta)+Q R \sin \theta, & \frac{\partial M}{\partial P}=R(1+\sin \theta)
\end{array}
$$

Substitution of Eqs. (a) and (b) into Eq. 5.17 yields, with $k=1.33$,

$$
\begin{align*}
q_{C}= & \int_{0}^{\pi / 2} \frac{P \cos ^{2} \phi}{E A} R d \phi+\int_{0}^{\pi / 2} \frac{1.33 P \sin ^{2} \phi}{G A} R d \phi \\
& +\int_{0}^{\pi / 2} \frac{P R^{2}(1-\cos \phi)^{2}}{E I} R d \phi+\int_{0}^{\pi / 2} \frac{(P+Q) \sin ^{2} \theta}{E A} R d \theta \tag{c}\\
& +\int_{0}^{\pi / 2} \frac{1.33(P+Q) \cos ^{2} \theta}{G A} R d \theta \\
& +\int_{0}^{\pi / 2} \frac{P R(1+\sin \theta)+Q R \sin \theta}{E I} R(1+\sin \theta) R d \theta
\end{align*}
$$

Integration yields, if we note that $Q=P$,

$$
\begin{equation*}
q_{C}=\frac{3 \pi}{4} \frac{P R}{E A}+\frac{3 \pi}{4} \frac{1.33 P R}{G A}+\left(\frac{7 \pi}{4}+1\right) \frac{P R^{3}}{E 1} \tag{d}
\end{equation*}
$$

The three terms on the right-hand side of Eq. (d) are the contributions of the axial force, shear, and moment, respectively, to the displacement q_{C}.
(b) For $P=150 \mathrm{~N}, R=200 \mathrm{~mm}, d=20.0 \mathrm{~mm}$ (hence, $A=314 \mathrm{~mm}^{2}$ and $I=7850 \mathrm{~mm}^{4}$), $E=200 \mathrm{GPa}$, and $G=77.5 \mathrm{GPa}$, Eq. (d) yields

$$
q_{C}=0.0011+0.0039+4.9666=4.97 \mathrm{~mm}
$$

where 0.0011 is due to the axial force, 0.0039 is due to shear, and 4.9666 is due to moment. The contributions of axial load and shear are negligible. Since $R / d=200 / 20=10$, this result confirms the statement at the end of Section 5.4.1.

5.4.2 Dummy Load Method and Dummy Unit Load Method

As illustrated in the preceding examples, Castigliano's theorem on deflections, as expressed in Eqs. 5.17 and 5.18, is useful for the determination of deflections and rotations
at the locations of concentrated forces and moments. Frequently, it is necessary to determine the deflection or rotation at a location that has no corresponding external load (see Example 5.8). For example, we might want to know the rotation at the free end of a cantilever beam that is subjected to concentrated loads at midspan and at the free end but has no concentrated moment at the free end (as is the case in Example 5.6). Castigliano's theorem on deflections can be applied in these situations as well. The modified procedure, known as the dummy load method, is as follows:

1. Apply a fictitious force F_{i} (or fictitious moment M_{i}) at the location and in the direction of the displacement q_{i} (or rotation θ_{i}) to be determined.
2. Write an expression for each of the internal actions (axial force, shear, moment, and torque) in each member of the structure in terms of the applied external forces and moments, including the fictitious force (or moment).
3. To determine the deflection q_{i} of the structure at the location of a fictitious force F_{i} and in the sense of F_{i}, differentiate each of the internal action expressions with respect to F_{i}. Similarly, to determine the rotation θ_{i} of the structure at the location of a fictitious moment M_{i} and in the sense of M_{i}, differentiate each of the internal action expressions with respect to M_{i}.
4. Substitute the expressions for the internal actions obtained in Step 2 and the derivatives obtained in Step 3 into Eq. 5.17 or 5.18 and perform the integration. The result is a relationship between the deflection q_{i} (or rotation θ_{i}) and the externally applied loads, including the fictitious force F_{i} (or moment M_{i}).
5. Since, in fact, the fictitious force (or moment) does not act on the structure, set its value to zero in the relation obtained in Step 4. Then substitute the numerical values of the external loads into this result to obtain the numerical value for the displacement q_{i} (or rotation θ_{i}).

The name dummy load method derives from the procedure. A fictitious (or dummy) load is applied, its effect on internal actions is determined, and then it is removed.

If the procedure is limited to small deflections of linear elastic structures (consisting of tension members, compression members, beams, and torsion bars), then the derivatives of the internal actions with respect to the fictitious loads are equivalent to the internal actions that result from a unit force (or unit moment) applied at the point of interest. When the method is used in this manner, it is referred to as the dummy unit load method. The net effect of this procedure is that it eliminates the differentiation in Eqs. 5.17 and 5.18. The internal actions (axial, shear, moment, and torque, respectively) in member j resulting from a unit force at location i may be represented as

$$
\begin{equation*}
n_{j i}^{F}=\frac{\partial N_{j}}{\partial F_{i}}, \quad v_{j i}^{F}=\frac{\partial V_{j}}{\partial F_{i}}, \quad m_{j i}^{F}=\frac{\partial M_{j}}{\partial F_{i}}, \quad t_{j i}^{F}=\frac{\partial T_{j}}{\partial F_{i}} \tag{5.19a}
\end{equation*}
$$

Similarly, the internal actions in member j resulting from a unit moment at location i may be represented as

$$
\begin{equation*}
n_{j i}^{M}=\frac{\partial N_{j}}{\partial M_{i}}, \quad v_{j i}^{M}=\frac{\partial V_{j}}{\partial M_{i}}, \quad m_{j i}^{M}=\frac{\partial M_{j}}{\partial M_{i}}, \quad t_{j i}^{M}=\frac{\partial T_{j}}{\partial M_{i}} \tag{5.19b}
\end{equation*}
$$

In the dummy unit load approach, Eqs. 5.17 and 5.18 take the form

$$
\begin{equation*}
q_{i}=\sum_{j=1}^{m}\left(\int \frac{N_{j} n_{j i}^{F}}{E_{j} A_{j}} d z+\int \frac{k_{j} V_{j}^{F} v_{j i}^{F}}{G_{j} A_{j}} d z+\int \frac{M_{j} m_{j i}^{F}}{E_{j} I_{j}} d z+\int \frac{T_{j} t_{j i}^{F}}{G_{j} J_{j}} d z\right) \tag{5.20a}
\end{equation*}
$$

[^0]: ${ }^{1}$ Note that the virtual displacement must not violate the essential boundary conditions (support conditions) for the structure.

